import pdb from torch import nn from torch.nn import functional as F from .loss_functions import Contrastive_Loss, Cosine_Sim_Loss class _DMMI_Framework(nn.Module): def __init__(self, backbone, classifier): super(_DMMI_Framework, self).__init__() self.backbone = backbone self.classifier = classifier self.cossim = Cosine_Sim_Loss() self.contrastive = Contrastive_Loss() def forward(self, x, l_feats, l_feats1, l_mask, target_flag=None, training_flag=True): input_shape = x.shape[-2:] l_1, features = self.backbone(x, l_feats, l_mask) x_c1, x_c2, x_c3, x_c4 = features de_feat, l_2, x = self.classifier(l_1, l_feats1, x_c4, x_c3, x_c2, x_c1) seg_mag = F.interpolate(x, size=input_shape, mode='bilinear', align_corners=True) if training_flag and target_flag!=None: loss_contrastive = self.contrastive(de_feat, l_1, target_flag) loss_cossim = self.cossim(l_1, l_2, l_mask, target_flag) else: loss_contrastive = 0 loss_cossim = 0 return loss_contrastive, loss_cossim, seg_mag class DMMI(_DMMI_Framework): pass