/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/timm/models/layers/__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers
  warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning)
/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/torch/functional.py:478: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at  ../aten/src/ATen/native/TensorShape.cpp:2894.)
  return _VF.meshgrid(tensors, **kwargs)  # type: ignore[attr-defined]
Image size: 480
loading dataset refcocog into memory...
creating index...
index created.
DONE (t=6.91s)
lavt_one
Window size 12!
Randomly initialize Multi-modal Swin Transformer weights.
/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/torchvision/transforms/functional.py:417: UserWarning: Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
  warnings.warn(
/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/torchvision/transforms/functional.py:417: UserWarning: Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
  warnings.warn(
/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/torchvision/transforms/functional.py:417: UserWarning: Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
  warnings.warn(
/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/torchvision/transforms/functional.py:417: UserWarning: Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
  warnings.warn(
Test:  [   0/5023]  eta: 1 day, 11:23:15    time: 25.3624  data: 1.4797  max mem: 1021
Test:  [ 100/5023]  eta: 0:33:48    time: 0.1684  data: 0.0016  max mem: 1021
Test:  [ 200/5023]  eta: 0:23:03    time: 0.1592  data: 0.0017  max mem: 1021
Test:  [ 300/5023]  eta: 0:19:25    time: 0.1644  data: 0.0016  max mem: 1021
Test:  [ 400/5023]  eta: 0:17:22    time: 0.1612  data: 0.0017  max mem: 1021
Test:  [ 500/5023]  eta: 0:16:03    time: 0.1652  data: 0.0018  max mem: 1021
Test:  [ 600/5023]  eta: 0:15:05    time: 0.1696  data: 0.0017  max mem: 1021
Test:  [ 700/5023]  eta: 0:14:20    time: 0.1571  data: 0.0017  max mem: 1021
Test:  [ 800/5023]  eta: 0:13:43    time: 0.1656  data: 0.0016  max mem: 1021
Test:  [ 900/5023]  eta: 0:13:10    time: 0.1706  data: 0.0065  max mem: 1021
Test:  [1000/5023]  eta: 0:12:43    time: 0.1676  data: 0.0018  max mem: 1021
Test:  [1100/5023]  eta: 0:12:15    time: 0.1624  data: 0.0018  max mem: 1021
Test:  [1200/5023]  eta: 0:11:49    time: 0.1668  data: 0.0016  max mem: 1021
Test:  [1300/5023]  eta: 0:11:25    time: 0.1618  data: 0.0016  max mem: 1021
Test:  [1400/5023]  eta: 0:11:01    time: 0.1540  data: 0.0017  max mem: 1021
Test:  [1500/5023]  eta: 0:10:38    time: 0.1667  data: 0.0017  max mem: 1021
Test:  [1600/5023]  eta: 0:10:16    time: 0.1638  data: 0.0017  max mem: 1021
Test:  [1700/5023]  eta: 0:09:55    time: 0.1625  data: 0.0017  max mem: 1021
Test:  [1800/5023]  eta: 0:09:35    time: 0.1670  data: 0.0017  max mem: 1021
Test:  [1900/5023]  eta: 0:09:15    time: 0.1800  data: 0.0148  max mem: 1021
Test:  [2000/5023]  eta: 0:08:55    time: 0.1717  data: 0.0017  max mem: 1021
Test:  [2100/5023]  eta: 0:08:35    time: 0.1545  data: 0.0017  max mem: 1021
Test:  [2200/5023]  eta: 0:08:16    time: 0.1496  data: 0.0017  max mem: 1021
Test:  [2300/5023]  eta: 0:07:57    time: 0.1710  data: 0.0018  max mem: 1021
Test:  [2400/5023]  eta: 0:07:38    time: 0.1629  data: 0.0017  max mem: 1021
Test:  [2500/5023]  eta: 0:07:20    time: 0.1680  data: 0.0017  max mem: 1021
Test:  [2600/5023]  eta: 0:07:02    time: 0.1635  data: 0.0017  max mem: 1021
Test:  [2700/5023]  eta: 0:06:43    time: 0.1665  data: 0.0018  max mem: 1021
Test:  [2800/5023]  eta: 0:06:25    time: 0.1665  data: 0.0017  max mem: 1021
Test:  [2900/5023]  eta: 0:06:07    time: 0.1705  data: 0.0017  max mem: 1021
Test:  [3000/5023]  eta: 0:05:49    time: 0.1665  data: 0.0016  max mem: 1021
Test:  [3100/5023]  eta: 0:05:32    time: 0.1715  data: 0.0016  max mem: 1021
Test:  [3200/5023]  eta: 0:05:15    time: 0.1609  data: 0.0017  max mem: 1021
Test:  [3300/5023]  eta: 0:04:57    time: 0.1610  data: 0.0017  max mem: 1021
Test:  [3400/5023]  eta: 0:04:39    time: 0.1459  data: 0.0017  max mem: 1021
Test:  [3500/5023]  eta: 0:04:21    time: 0.1573  data: 0.0016  max mem: 1021
Test:  [3600/5023]  eta: 0:04:04    time: 0.1657  data: 0.0018  max mem: 1021
Test:  [3700/5023]  eta: 0:03:46    time: 0.1691  data: 0.0045  max mem: 1021
Test:  [3800/5023]  eta: 0:03:29    time: 0.1700  data: 0.0017  max mem: 1021
Test:  [3900/5023]  eta: 0:03:12    time: 0.1571  data: 0.0016  max mem: 1021
Test:  [4000/5023]  eta: 0:02:54    time: 0.1535  data: 0.0017  max mem: 1021
Test:  [4100/5023]  eta: 0:02:37    time: 0.1576  data: 0.0018  max mem: 1021
Test:  [4200/5023]  eta: 0:02:19    time: 0.1623  data: 0.0017  max mem: 1021
Test:  [4300/5023]  eta: 0:02:02    time: 0.1656  data: 0.0017  max mem: 1021
Test:  [4400/5023]  eta: 0:01:45    time: 0.1578  data: 0.0017  max mem: 1021
Test:  [4500/5023]  eta: 0:01:28    time: 0.1532  data: 0.0016  max mem: 1021
Test:  [4600/5023]  eta: 0:01:11    time: 0.1494  data: 0.0017  max mem: 1021
Test:  [4700/5023]  eta: 0:00:54    time: 0.1659  data: 0.0017  max mem: 1021
Test:  [4800/5023]  eta: 0:00:37    time: 0.1613  data: 0.0016  max mem: 1021
Test:  [4900/5023]  eta: 0:00:20    time: 0.1614  data: 0.0017  max mem: 1021
Test:  [5000/5023]  eta: 0:00:03    time: 0.1661  data: 0.0016  max mem: 1021
Test: Total time: 0:14:08
Final results:
Mean IoU is 65.28

    precision@0.5 = 73.84
    precision@0.6 = 69.06
    precision@0.7 = 62.71
    precision@0.8 = 51.72
    precision@0.9 = 26.82
    overall IoU = 63.68