#!/bin/bash #SBATCH --job-name=lavt_cc+r # Submit a job named "example" #SBATCH --mail-user=vip.maildummy@gmail.com #SBATCH --mail-type=BEGIN,END,FAIL #SBATCH --partition=a3000 # a6000 or a100 #SBATCH --gres=gpu:2 #SBATCH --time=7-00:00:00 # d-hh:mm:ss, max time limit #SBATCH --mem=84000 # cpu memory size #SBATCH --cpus-per-task=8 # cpu num #SBATCH --output=log_refcoco+_random_460.txt # std output filename ml cuda/11.0 # 필요한 쿠다 버전 로드 eval "$(conda shell.bash hook)" # Initialize Conda Environment conda activate lavt # Activate your conda environment # train # mkdir ./models # mkdir ./models/refcoco+ # CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 12345 train_mosaic.py --model lavt --dataset refcoco+ --model_id refcoco+ --batch-size 8 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/refcoco+/output # mkdir ./models/mosaic_refcoco+_lavt_one # srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 12348 train_mosaic.py --model lavt_one --dataset refcoco+ --model_id mosaic_refcoco+_lavt_one --batch-size 14 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 50 --img_size 480 2>&1 | tee ./models/mosaic_refcoco+_lavt_one/output mkdir ./experiments/refcoco+_unc/refcoco+_random_460/ srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 92348 train_mosaic.py --model lavt_one --dataset refcoco+ --model_id refcoco+_random_460 --batch-size 16 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 --config config/random_460.yaml 2>&1 | tee ./experiments/refcoco+_unc/refcoco+_random_460/log.txt