#!/bin/bash #SBATCH --job-name=lavt_gccm # Submit a job named "example" #SBATCH --mail-user=vip.maildummy@gmail.com #SBATCH --mail-type=BEGIN,END,FAIL #SBATCH --partition=a100 # a6000 or a100 #SBATCH --gres=gpu:2 #SBATCH --time=7-00:00:00 # d-hh:mm:ss, max time limit #SBATCH --mem=84000 # cpu memory size #SBATCH --cpus-per-task=8 # cpu num #SBATCH --output=log_mosaic_grefcoco_unc_lavt_one.txt # std output filename ml cuda/11.0 # 필요한 쿠다 버전 로드 eval "$(conda shell.bash hook)" # Initialize Conda Environment conda activate lavt # Activate your conda environment # train # mkdir ./models # mkdir ./models/gref_unc # CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node 2 --master_port 12345 train_mosaic.py --model lavt --dataset grefcoco --splitBy unc --model_id gref_unc --batch-size 14 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/gref_unc/output mkdir ./models/mosaic_gref_unc_lavt_one srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 13336 train_mosaic.py --model lavt_one --dataset grefcoco --splitBy unc --model_id mosaic_gref_unc_lavt_one --batch-size 14 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 50 --img_size 480 2>&1 | tee ./models/mosaic_gref_unc_lavt_one/output