|
""" |
|
Instance Sequence Matching |
|
Modified from DETR (https://github.com/facebookresearch/detr) |
|
""" |
|
import torch |
|
from scipy.optimize import linear_sum_assignment |
|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
from util.box_ops import box_cxcywh_to_xyxy, generalized_box_iou, multi_iou |
|
from util.misc import nested_tensor_from_tensor_list |
|
|
|
INF = 100000000 |
|
|
|
def dice_coef(inputs, targets): |
|
inputs = inputs.sigmoid() |
|
inputs = inputs.flatten(1).unsqueeze(1) |
|
targets = targets.flatten(1).unsqueeze(0) |
|
numerator = 2 * (inputs * targets).sum(2) |
|
denominator = inputs.sum(-1) + targets.sum(-1) |
|
|
|
|
|
coef = (numerator + 1) / (denominator + 1) |
|
return coef |
|
|
|
def sigmoid_focal_coef(inputs, targets, alpha: float = 0.25, gamma: float = 2): |
|
N, M = len(inputs), len(targets) |
|
inputs = inputs.flatten(1).unsqueeze(1).expand(-1, M, -1) |
|
targets = targets.flatten(1).unsqueeze(0).expand(N, -1, -1) |
|
|
|
prob = inputs.sigmoid() |
|
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") |
|
p_t = prob * targets + (1 - prob) * (1 - targets) |
|
coef = ce_loss * ((1 - p_t) ** gamma) |
|
|
|
if alpha >= 0: |
|
alpha_t = alpha * targets + (1 - alpha) * (1 - targets) |
|
coef = alpha_t * coef |
|
|
|
return coef.mean(2) |
|
|
|
|
|
class HungarianMatcher(nn.Module): |
|
"""This class computes an assignment between the targets and the predictions of the network |
|
|
|
For efficiency reasons, the targets don't include the no_object. Because of this, in general, |
|
there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, |
|
while the others are un-matched (and thus treated as non-objects). |
|
""" |
|
|
|
def __init__(self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1, |
|
cost_mask: float = 1, cost_dice: float = 1, num_classes: int = 1): |
|
"""Creates the matcher |
|
|
|
Params: |
|
cost_class: This is the relative weight of the classification error in the matching cost |
|
cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost |
|
cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost |
|
cost_mask: This is the relative weight of the sigmoid focal loss of the mask in the matching cost |
|
cost_dice: This is the relative weight of the dice loss of the mask in the matching cost |
|
""" |
|
super().__init__() |
|
self.cost_class = cost_class |
|
self.cost_bbox = cost_bbox |
|
self.cost_giou = cost_giou |
|
self.cost_mask = cost_mask |
|
self.cost_dice = cost_dice |
|
self.num_classes = num_classes |
|
assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0 \ |
|
or cost_mask != 0 or cost_dice != 0, "all costs cant be 0" |
|
self.mask_out_stride = 4 |
|
|
|
@torch.no_grad() |
|
def forward(self, outputs, targets): |
|
""" Performs the matching |
|
Params: |
|
outputs: This is a dict that contains at least these entries: |
|
"pred_logits": Tensor of dim [batch_size, num_queries_per_frame, num_frames, num_classes] with the classification logits |
|
"pred_boxes": Tensor of dim [batch_size, num_queries_per_frame, num_frames, 4] with the predicted box coordinates |
|
"pred_masks": Tensor of dim [batch_size, num_queries_per_frame, num_frames, h, w], h,w in 4x size |
|
targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing: |
|
NOTE: Since every frame has one object at most |
|
"labels": Tensor of dim [num_frames] (where num_target_boxes is the number of ground-truth |
|
objects in the target) containing the class labels |
|
"boxes": Tensor of dim [num_frames, 4] containing the target box coordinates |
|
"masks": Tensor of dim [num_frames, h, w], h,w in origin size |
|
Returns: |
|
A list of size batch_size, containing tuples of (index_i, index_j) where: |
|
- index_i is the indices of the selected predictions (in order) |
|
- index_j is the indices of the corresponding selected targets (in order) |
|
For each batch element, it holds: |
|
len(index_i) = len(index_j) = min(num_queries, num_target_boxes) |
|
""" |
|
src_logits = outputs["pred_logits"] |
|
src_boxes = outputs["pred_boxes"] |
|
src_masks = outputs["pred_masks"] |
|
|
|
bs, nf, nq, h, w = src_masks.shape |
|
|
|
|
|
target_masks, valid = nested_tensor_from_tensor_list([t["masks"] for t in targets], |
|
size_divisibility=32, |
|
split=False).decompose() |
|
target_masks = target_masks.to(src_masks) |
|
|
|
|
|
start = int(self.mask_out_stride // 2) |
|
im_h, im_w = target_masks.shape[-2:] |
|
|
|
target_masks = target_masks[:, :, start::self.mask_out_stride, start::self.mask_out_stride] |
|
assert target_masks.size(2) * self.mask_out_stride == im_h |
|
assert target_masks.size(3) * self.mask_out_stride == im_w |
|
|
|
indices = [] |
|
for i in range(bs): |
|
out_prob = src_logits[i].sigmoid() |
|
out_bbox = src_boxes[i] |
|
out_mask = src_masks[i] |
|
|
|
tgt_ids = targets[i]["labels"] |
|
tgt_bbox = targets[i]["boxes"] |
|
tgt_mask = target_masks[i] |
|
tgt_valid = targets[i]["valid"] |
|
|
|
|
|
|
|
cost_class = [] |
|
for t in range(nf): |
|
if tgt_valid[t] == 0: |
|
continue |
|
|
|
out_prob_split = out_prob[t] |
|
tgt_ids_split = tgt_ids[t].unsqueeze(0) |
|
|
|
|
|
alpha = 0.25 |
|
gamma = 2.0 |
|
neg_cost_class = (1 - alpha) * (out_prob_split ** gamma) * (-(1 - out_prob_split + 1e-8).log()) |
|
pos_cost_class = alpha * ((1 - out_prob_split) ** gamma) * (-(out_prob_split + 1e-8).log()) |
|
if self.num_classes == 1: |
|
cost_class_split = pos_cost_class[:, [0]] - neg_cost_class[:, [0]] |
|
else: |
|
cost_class_split = pos_cost_class[:, tgt_ids_split] - neg_cost_class[:, tgt_ids_split] |
|
|
|
cost_class.append(cost_class_split) |
|
cost_class = torch.stack(cost_class, dim=0).mean(0) |
|
|
|
|
|
|
|
cost_bbox, cost_giou = [], [] |
|
for t in range(nf): |
|
out_bbox_split = out_bbox[t] |
|
tgt_bbox_split = tgt_bbox[t].unsqueeze(0) |
|
|
|
|
|
cost_bbox_split = torch.cdist(out_bbox_split, tgt_bbox_split, p=1) |
|
|
|
|
|
cost_giou_split = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox_split), |
|
box_cxcywh_to_xyxy(tgt_bbox_split)) |
|
|
|
cost_bbox.append(cost_bbox_split) |
|
cost_giou.append(cost_giou_split) |
|
cost_bbox = torch.stack(cost_bbox, dim=0).mean(0) |
|
cost_giou = torch.stack(cost_giou, dim=0).mean(0) |
|
|
|
|
|
|
|
cost_mask = sigmoid_focal_coef(out_mask.transpose(0, 1), tgt_mask.unsqueeze(0)) |
|
|
|
|
|
cost_dice = -dice_coef(out_mask.transpose(0, 1), tgt_mask.unsqueeze(0)) |
|
|
|
|
|
C = self.cost_class * cost_class + self.cost_bbox * cost_bbox + self.cost_giou * cost_giou + \ |
|
self.cost_mask * cost_mask + self.cost_dice * cost_dice |
|
|
|
|
|
_, src_ind = torch.min(C, dim=0) |
|
tgt_ind = torch.arange(1).to(src_ind) |
|
indices.append((src_ind.long(), tgt_ind.long())) |
|
|
|
|
|
return indices |
|
|
|
|
|
def build_matcher(args): |
|
if args.binary: |
|
num_classes = 1 |
|
else: |
|
if args.dataset_file == 'ytvos': |
|
num_classes = 65 |
|
elif args.dataset_file == 'davis': |
|
num_classes = 78 |
|
elif args.dataset_file == 'a2d' or args.dataset_file == 'jhmdb': |
|
num_classes = 1 |
|
else: |
|
num_classes = 91 |
|
return HungarianMatcher(cost_class=args.set_cost_class, |
|
cost_bbox=args.set_cost_bbox, |
|
cost_giou=args.set_cost_giou, |
|
cost_mask=args.set_cost_mask, |
|
cost_dice=args.set_cost_dice, |
|
num_classes=num_classes) |
|
|
|
|
|
|