VRIS_vip / models /matcher.py
dianecy's picture
Add files using upload-large-folder tool
9b855a7 verified
"""
Instance Sequence Matching
Modified from DETR (https://github.com/facebookresearch/detr)
"""
import torch
from scipy.optimize import linear_sum_assignment
from torch import nn
import torch.nn.functional as F
from util.box_ops import box_cxcywh_to_xyxy, generalized_box_iou, multi_iou
from util.misc import nested_tensor_from_tensor_list
INF = 100000000
def dice_coef(inputs, targets):
inputs = inputs.sigmoid()
inputs = inputs.flatten(1).unsqueeze(1) # [N, 1, THW]
targets = targets.flatten(1).unsqueeze(0) # [1, M, THW]
numerator = 2 * (inputs * targets).sum(2)
denominator = inputs.sum(-1) + targets.sum(-1)
# NOTE coef doesn't be subtracted to 1 as it is not necessary for computing costs
coef = (numerator + 1) / (denominator + 1)
return coef
def sigmoid_focal_coef(inputs, targets, alpha: float = 0.25, gamma: float = 2):
N, M = len(inputs), len(targets)
inputs = inputs.flatten(1).unsqueeze(1).expand(-1, M, -1) # [N, M, THW]
targets = targets.flatten(1).unsqueeze(0).expand(N, -1, -1) # [N, M, THW]
prob = inputs.sigmoid()
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = prob * targets + (1 - prob) * (1 - targets)
coef = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
coef = alpha_t * coef
return coef.mean(2) # [N, M]
class HungarianMatcher(nn.Module):
"""This class computes an assignment between the targets and the predictions of the network
For efficiency reasons, the targets don't include the no_object. Because of this, in general,
there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions,
while the others are un-matched (and thus treated as non-objects).
"""
def __init__(self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1,
cost_mask: float = 1, cost_dice: float = 1, num_classes: int = 1):
"""Creates the matcher
Params:
cost_class: This is the relative weight of the classification error in the matching cost
cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost
cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost
cost_mask: This is the relative weight of the sigmoid focal loss of the mask in the matching cost
cost_dice: This is the relative weight of the dice loss of the mask in the matching cost
"""
super().__init__()
self.cost_class = cost_class
self.cost_bbox = cost_bbox
self.cost_giou = cost_giou
self.cost_mask = cost_mask
self.cost_dice = cost_dice
self.num_classes = num_classes
assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0 \
or cost_mask != 0 or cost_dice != 0, "all costs cant be 0"
self.mask_out_stride = 4
@torch.no_grad()
def forward(self, outputs, targets):
""" Performs the matching
Params:
outputs: This is a dict that contains at least these entries:
"pred_logits": Tensor of dim [batch_size, num_queries_per_frame, num_frames, num_classes] with the classification logits
"pred_boxes": Tensor of dim [batch_size, num_queries_per_frame, num_frames, 4] with the predicted box coordinates
"pred_masks": Tensor of dim [batch_size, num_queries_per_frame, num_frames, h, w], h,w in 4x size
targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
NOTE: Since every frame has one object at most
"labels": Tensor of dim [num_frames] (where num_target_boxes is the number of ground-truth
objects in the target) containing the class labels
"boxes": Tensor of dim [num_frames, 4] containing the target box coordinates
"masks": Tensor of dim [num_frames, h, w], h,w in origin size
Returns:
A list of size batch_size, containing tuples of (index_i, index_j) where:
- index_i is the indices of the selected predictions (in order)
- index_j is the indices of the corresponding selected targets (in order)
For each batch element, it holds:
len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
"""
src_logits = outputs["pred_logits"]
src_boxes = outputs["pred_boxes"]
src_masks = outputs["pred_masks"]
bs, nf, nq, h, w = src_masks.shape
# handle mask padding issue
target_masks, valid = nested_tensor_from_tensor_list([t["masks"] for t in targets],
size_divisibility=32,
split=False).decompose()
target_masks = target_masks.to(src_masks) # [B, T, H, W]
# downsample ground truth masks with ratio mask_out_stride
start = int(self.mask_out_stride // 2)
im_h, im_w = target_masks.shape[-2:]
target_masks = target_masks[:, :, start::self.mask_out_stride, start::self.mask_out_stride]
assert target_masks.size(2) * self.mask_out_stride == im_h
assert target_masks.size(3) * self.mask_out_stride == im_w
indices = []
for i in range(bs):
out_prob = src_logits[i].sigmoid()
out_bbox = src_boxes[i]
out_mask = src_masks[i]
tgt_ids = targets[i]["labels"]
tgt_bbox = targets[i]["boxes"]
tgt_mask = target_masks[i]
tgt_valid = targets[i]["valid"]
# class cost
# we average the cost on valid frames
cost_class = []
for t in range(nf):
if tgt_valid[t] == 0:
continue
out_prob_split = out_prob[t]
tgt_ids_split = tgt_ids[t].unsqueeze(0)
# Compute the classification cost.
alpha = 0.25
gamma = 2.0
neg_cost_class = (1 - alpha) * (out_prob_split ** gamma) * (-(1 - out_prob_split + 1e-8).log())
pos_cost_class = alpha * ((1 - out_prob_split) ** gamma) * (-(out_prob_split + 1e-8).log())
if self.num_classes == 1: # binary referred
cost_class_split = pos_cost_class[:, [0]] - neg_cost_class[:, [0]]
else:
cost_class_split = pos_cost_class[:, tgt_ids_split] - neg_cost_class[:, tgt_ids_split]
cost_class.append(cost_class_split)
cost_class = torch.stack(cost_class, dim=0).mean(0) # [q, 1]
# box cost
# we average the cost on every frame
cost_bbox, cost_giou = [], []
for t in range(nf):
out_bbox_split = out_bbox[t]
tgt_bbox_split = tgt_bbox[t].unsqueeze(0)
# Compute the L1 cost between boxes
cost_bbox_split = torch.cdist(out_bbox_split, tgt_bbox_split, p=1)
# Compute the giou cost betwen boxes
cost_giou_split = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox_split),
box_cxcywh_to_xyxy(tgt_bbox_split))
cost_bbox.append(cost_bbox_split)
cost_giou.append(cost_giou_split)
cost_bbox = torch.stack(cost_bbox, dim=0).mean(0)
cost_giou = torch.stack(cost_giou, dim=0).mean(0)
# mask cost
# Compute the focal loss between masks
cost_mask = sigmoid_focal_coef(out_mask.transpose(0, 1), tgt_mask.unsqueeze(0))
# Compute the dice loss betwen masks
cost_dice = -dice_coef(out_mask.transpose(0, 1), tgt_mask.unsqueeze(0))
# Final cost matrix
C = self.cost_class * cost_class + self.cost_bbox * cost_bbox + self.cost_giou * cost_giou + \
self.cost_mask * cost_mask + self.cost_dice * cost_dice # [q, 1]
# Only has one tgt, MinCost Matcher
_, src_ind = torch.min(C, dim=0)
tgt_ind = torch.arange(1).to(src_ind)
indices.append((src_ind.long(), tgt_ind.long()))
# list[tuple], length is batch_size
return indices
def build_matcher(args):
if args.binary:
num_classes = 1
else:
if args.dataset_file == 'ytvos':
num_classes = 65
elif args.dataset_file == 'davis':
num_classes = 78
elif args.dataset_file == 'a2d' or args.dataset_file == 'jhmdb':
num_classes = 1
else:
num_classes = 91 # for coco
return HungarianMatcher(cost_class=args.set_cost_class,
cost_bbox=args.set_cost_bbox,
cost_giou=args.set_cost_giou,
cost_mask=args.set_cost_mask,
cost_dice=args.set_cost_dice,
num_classes=num_classes)