|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
from typing import Optional, List |
|
import math |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn, Tensor |
|
from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_ |
|
|
|
from util.misc import inverse_sigmoid |
|
from models.ops.modules import MSDeformAttn |
|
|
|
from einops import rearrange |
|
|
|
|
|
class DeformableTransformer(nn.Module): |
|
def __init__(self, d_model=256, nhead=8, |
|
num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=1024, dropout=0.1, |
|
activation="relu", return_intermediate_dec=False, |
|
num_feature_levels=4, dec_n_points=4, enc_n_points=4, |
|
two_stage=False, two_stage_num_proposals=300): |
|
super().__init__() |
|
|
|
self.d_model = d_model |
|
self.nhead = nhead |
|
self.dropout = dropout |
|
self.two_stage = two_stage |
|
self.two_stage_num_proposals = two_stage_num_proposals |
|
self.num_feature_level = num_feature_levels |
|
|
|
encoder_layer = DeformableTransformerEncoderLayer(d_model, dim_feedforward, |
|
dropout, activation, |
|
num_feature_levels, |
|
nhead, enc_n_points) |
|
self.encoder = DeformableTransformerEncoder(encoder_layer, num_encoder_layers) |
|
|
|
decoder_layer = DeformableTransformerDecoderLayer(d_model, dim_feedforward, |
|
dropout, activation, |
|
num_feature_levels, |
|
nhead, dec_n_points) |
|
self.decoder = DeformableTransformerDecoder(decoder_layer, num_decoder_layers, return_intermediate_dec) |
|
|
|
self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model)) |
|
|
|
if two_stage: |
|
self.enc_output = nn.Linear(d_model, d_model) |
|
self.enc_output_norm = nn.LayerNorm(d_model) |
|
self.pos_trans = nn.Linear(d_model * 2, d_model * 2) |
|
self.pos_trans_norm = nn.LayerNorm(d_model * 2) |
|
else: |
|
self.reference_points = nn.Linear(d_model, 2) |
|
|
|
self._reset_parameters() |
|
|
|
def _reset_parameters(self): |
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_uniform_(p) |
|
for m in self.modules(): |
|
if isinstance(m, MSDeformAttn): |
|
m._reset_parameters() |
|
if not self.two_stage: |
|
xavier_uniform_(self.reference_points.weight.data, gain=1.0) |
|
constant_(self.reference_points.bias.data, 0.) |
|
normal_(self.level_embed) |
|
|
|
def get_proposal_pos_embed(self, proposals): |
|
num_pos_feats = 128 |
|
temperature = 10000 |
|
scale = 2 * math.pi |
|
|
|
dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=proposals.device) |
|
dim_t = temperature ** (2 * (dim_t // 2) / num_pos_feats) |
|
|
|
proposals = proposals.sigmoid() * scale |
|
|
|
pos = proposals[:, :, :, None] / dim_t |
|
|
|
pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2) |
|
return pos |
|
|
|
def gen_encoder_output_proposals(self, memory, memory_padding_mask, spatial_shapes): |
|
N_, S_, C_ = memory.shape |
|
base_scale = 4.0 |
|
proposals = [] |
|
_cur = 0 |
|
for lvl, (H_, W_) in enumerate(spatial_shapes): |
|
mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H_ * W_)].view(N_, H_, W_, 1) |
|
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1) |
|
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1) |
|
|
|
grid_y, grid_x = torch.meshgrid(torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device), |
|
torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device)) |
|
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) |
|
|
|
scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2) |
|
grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale |
|
wh = torch.ones_like(grid) * 0.05 * (2.0 ** lvl) |
|
proposal = torch.cat((grid, wh), -1).view(N_, -1, 4) |
|
proposals.append(proposal) |
|
_cur += (H_ * W_) |
|
output_proposals = torch.cat(proposals, 1) |
|
output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True) |
|
output_proposals = torch.log(output_proposals / (1 - output_proposals)) |
|
output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf')) |
|
output_proposals = output_proposals.masked_fill(~output_proposals_valid, float('inf')) |
|
|
|
output_memory = memory |
|
output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0)) |
|
output_memory = output_memory.masked_fill(~output_proposals_valid, float(0)) |
|
output_memory = self.enc_output_norm(self.enc_output(output_memory)) |
|
return output_memory, output_proposals |
|
|
|
def get_valid_ratio(self, mask): |
|
_, H, W = mask.shape |
|
valid_H = torch.sum(~mask[:, :, 0], 1) |
|
valid_W = torch.sum(~mask[:, 0, :], 1) |
|
valid_ratio_h = valid_H.float() / H |
|
valid_ratio_w = valid_W.float() / W |
|
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) |
|
return valid_ratio |
|
|
|
def forward(self, srcs, tgt, masks, pos_embeds, query_embed=None): |
|
assert self.two_stage or query_embed is not None |
|
""" |
|
srcs (list[Tensor]): list of tensors num_layers x [batch_size*time, c, hi, wi], input of encoder |
|
tgt (Tensor): [batch_size, time, c, num_queries_per_frame] |
|
masks (list[Tensor]): list of tensors num_layers x [batch_size*time, hi, wi], the mask of srcs |
|
pos_embeds (list[Tensor]): list of tensors num_layers x [batch_size*time, c, hi, wi], position encoding of srcs |
|
query_embed (Tensor): [num_queries, c] |
|
""" |
|
|
|
src_flatten = [] |
|
mask_flatten = [] |
|
lvl_pos_embed_flatten = [] |
|
spatial_shapes = [] |
|
for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)): |
|
bs, c, h, w = src.shape |
|
spatial_shape = (h, w) |
|
spatial_shapes.append(spatial_shape) |
|
|
|
src = src.flatten(2).transpose(1, 2) |
|
mask = mask.flatten(1) |
|
pos_embed = pos_embed.flatten(2).transpose(1, 2) |
|
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) |
|
|
|
lvl_pos_embed_flatten.append(lvl_pos_embed) |
|
src_flatten.append(src) |
|
mask_flatten.append(mask) |
|
|
|
|
|
src_flatten = torch.cat(src_flatten, 1) |
|
mask_flatten = torch.cat(mask_flatten, 1) |
|
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) |
|
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device) |
|
level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) |
|
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) |
|
|
|
|
|
|
|
memory = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios, lvl_pos_embed_flatten, mask_flatten) |
|
|
|
|
|
bs, _, c = memory.shape |
|
if self.two_stage: |
|
output_memory, output_proposals = self.gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes) |
|
|
|
|
|
enc_outputs_class = self.decoder.class_embed[self.decoder.num_layers](output_memory) |
|
enc_outputs_coord_unact = self.decoder.bbox_embed[self.decoder.num_layers](output_memory) + output_proposals |
|
|
|
topk = self.two_stage_num_proposals |
|
topk_proposals = torch.topk(enc_outputs_class[..., 0], topk, dim=1)[1] |
|
topk_coords_unact = torch.gather(enc_outputs_coord_unact, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)) |
|
topk_coords_unact = topk_coords_unact.detach() |
|
reference_points = topk_coords_unact.sigmoid() |
|
init_reference_out = reference_points |
|
pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact))) |
|
query_embed, tgt = torch.split(pos_trans_out, c, dim=2) |
|
else: |
|
b, t, q, c = tgt.shape |
|
tgt = rearrange(tgt, 'b t q c -> (b t) q c') |
|
query_embed = query_embed.unsqueeze(0).expand(b*t, -1, -1) |
|
reference_points = self.reference_points(query_embed).sigmoid() |
|
init_reference_out = reference_points |
|
|
|
|
|
hs, inter_references, inter_samples = self.decoder(tgt, reference_points, memory, |
|
spatial_shapes, level_start_index, valid_ratios, query_embed, mask_flatten) |
|
|
|
inter_references_out = inter_references |
|
|
|
|
|
memory_features = [] |
|
spatial_index = 0 |
|
for lvl in range(self.num_feature_level - 1): |
|
h, w = spatial_shapes[lvl] |
|
|
|
memory_lvl = memory[:, spatial_index : spatial_index + h * w, :].reshape(bs, h, w, c).permute(0, 3, 1, 2).contiguous() |
|
memory_features.append(memory_lvl) |
|
spatial_index += h * w |
|
|
|
if self.two_stage: |
|
return hs, memory_features, init_reference_out, inter_references_out, enc_outputs_class, enc_outputs_coord_unact, inter_samples |
|
|
|
|
|
|
|
|
|
|
|
|
|
return hs, memory_features, init_reference_out, inter_references_out, None, None, inter_samples |
|
|
|
|
|
class DeformableTransformerEncoderLayer(nn.Module): |
|
def __init__(self, |
|
d_model=256, d_ffn=1024, |
|
dropout=0.1, activation="relu", |
|
n_levels=4, n_heads=8, n_points=4): |
|
super().__init__() |
|
|
|
|
|
self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points) |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.norm1 = nn.LayerNorm(d_model) |
|
|
|
|
|
self.linear1 = nn.Linear(d_model, d_ffn) |
|
self.activation = _get_activation_fn(activation) |
|
self.dropout2 = nn.Dropout(dropout) |
|
self.linear2 = nn.Linear(d_ffn, d_model) |
|
self.dropout3 = nn.Dropout(dropout) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
|
|
@staticmethod |
|
def with_pos_embed(tensor, pos): |
|
return tensor if pos is None else tensor + pos |
|
|
|
def forward_ffn(self, src): |
|
src2 = self.linear2(self.dropout2(self.activation(self.linear1(src)))) |
|
src = src + self.dropout3(src2) |
|
src = self.norm2(src) |
|
return src |
|
|
|
def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, padding_mask=None): |
|
|
|
src2, sampling_locations, attention_weights = self.self_attn(self.with_pos_embed(src, pos), reference_points, |
|
src, spatial_shapes, level_start_index, padding_mask) |
|
src = src + self.dropout1(src2) |
|
src = self.norm1(src) |
|
|
|
|
|
src = self.forward_ffn(src) |
|
|
|
return src |
|
|
|
|
|
class DeformableTransformerEncoder(nn.Module): |
|
def __init__(self, encoder_layer, num_layers): |
|
super().__init__() |
|
self.layers = _get_clones(encoder_layer, num_layers) |
|
self.num_layers = num_layers |
|
|
|
@staticmethod |
|
def get_reference_points(spatial_shapes, valid_ratios, device): |
|
reference_points_list = [] |
|
for lvl, (H_, W_) in enumerate(spatial_shapes): |
|
|
|
ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device), |
|
torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device)) |
|
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_) |
|
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_) |
|
ref = torch.stack((ref_x, ref_y), -1) |
|
reference_points_list.append(ref) |
|
reference_points = torch.cat(reference_points_list, 1) |
|
reference_points = reference_points[:, :, None] * valid_ratios[:, None] |
|
return reference_points |
|
|
|
def forward(self, src, spatial_shapes, level_start_index, valid_ratios, pos=None, padding_mask=None): |
|
output = src |
|
reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device) |
|
for _, layer in enumerate(self.layers): |
|
output = layer(output, pos, reference_points, spatial_shapes, level_start_index, padding_mask) |
|
|
|
return output |
|
|
|
|
|
class DeformableTransformerDecoderLayer(nn.Module): |
|
def __init__(self, d_model=256, d_ffn=1024, |
|
dropout=0.1, activation="relu", |
|
n_levels=4, n_heads=8, n_points=4): |
|
super().__init__() |
|
|
|
|
|
self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points) |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.norm1 = nn.LayerNorm(d_model) |
|
|
|
|
|
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout) |
|
self.dropout2 = nn.Dropout(dropout) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
|
|
|
|
self.linear1 = nn.Linear(d_model, d_ffn) |
|
self.activation = _get_activation_fn(activation) |
|
self.dropout3 = nn.Dropout(dropout) |
|
self.linear2 = nn.Linear(d_ffn, d_model) |
|
self.dropout4 = nn.Dropout(dropout) |
|
self.norm3 = nn.LayerNorm(d_model) |
|
|
|
@staticmethod |
|
def with_pos_embed(tensor, pos): |
|
return tensor if pos is None else tensor + pos |
|
|
|
def forward_ffn(self, tgt): |
|
tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt)))) |
|
tgt = tgt + self.dropout4(tgt2) |
|
tgt = self.norm3(tgt) |
|
return tgt |
|
|
|
def forward(self, tgt, query_pos, reference_points, src, src_spatial_shapes, level_start_index, src_padding_mask=None): |
|
|
|
q = k = self.with_pos_embed(tgt, query_pos) |
|
tgt2 = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), tgt.transpose(0, 1))[0].transpose(0, 1) |
|
tgt = tgt + self.dropout2(tgt2) |
|
tgt = self.norm2(tgt) |
|
|
|
|
|
tgt2, sampling_locations, attention_weights = self.cross_attn(self.with_pos_embed(tgt, query_pos), |
|
reference_points, |
|
src, src_spatial_shapes, level_start_index, src_padding_mask) |
|
tgt = tgt + self.dropout1(tgt2) |
|
tgt = self.norm1(tgt) |
|
|
|
|
|
tgt = self.forward_ffn(tgt) |
|
|
|
return tgt, sampling_locations, attention_weights |
|
|
|
|
|
|
|
class DeformableTransformerDecoder(nn.Module): |
|
def __init__(self, decoder_layer, num_layers, return_intermediate=False): |
|
super().__init__() |
|
self.layers = _get_clones(decoder_layer, num_layers) |
|
self.num_layers = num_layers |
|
self.return_intermediate = return_intermediate |
|
|
|
self.bbox_embed = None |
|
self.class_embed = None |
|
|
|
def forward(self, tgt, reference_points, src, src_spatial_shapes, src_level_start_index, src_valid_ratios, |
|
query_pos=None, src_padding_mask=None): |
|
|
|
output = tgt |
|
|
|
intermediate = [] |
|
intermediate_reference_points = [] |
|
intermediate_samples = [] |
|
for lid, layer in enumerate(self.layers): |
|
if reference_points.shape[-1] == 4: |
|
reference_points_input = reference_points[:, :, None] \ |
|
* torch.cat([src_valid_ratios, src_valid_ratios], -1)[:, None] |
|
else: |
|
assert reference_points.shape[-1] == 2 |
|
reference_points_input = reference_points[:, :, None] * src_valid_ratios[:, None] |
|
output, sampling_locations, attention_weights = layer(output, query_pos, reference_points_input, |
|
src, src_spatial_shapes, src_level_start_index, src_padding_mask) |
|
|
|
|
|
|
|
|
|
|
|
N, Len_q = sampling_locations.shape[:2] |
|
sampling_locations = sampling_locations / src_valid_ratios[:, None, None, :, None, :] |
|
weights_flat = attention_weights.view(N, Len_q, -1) |
|
samples_flat = sampling_locations.view(N, Len_q, -1, 2) |
|
top_weights, top_idx = weights_flat.topk(30, dim=2) |
|
weights_keep = torch.gather(weights_flat, 2, top_idx) |
|
samples_keep = torch.gather(samples_flat, 2, top_idx.unsqueeze(-1).repeat(1, 1, 1, 2)) |
|
|
|
|
|
if self.bbox_embed is not None: |
|
tmp = self.bbox_embed[lid](output) |
|
if reference_points.shape[-1] == 4: |
|
new_reference_points = tmp + inverse_sigmoid(reference_points) |
|
new_reference_points = new_reference_points.sigmoid() |
|
else: |
|
assert reference_points.shape[-1] == 2 |
|
new_reference_points = tmp |
|
new_reference_points[..., :2] = tmp[..., :2] + inverse_sigmoid(reference_points) |
|
new_reference_points = new_reference_points.sigmoid() |
|
reference_points = new_reference_points.detach() |
|
|
|
if self.return_intermediate: |
|
intermediate.append(output) |
|
intermediate_reference_points.append(reference_points) |
|
intermediate_samples.append(samples_keep) |
|
|
|
if self.return_intermediate: |
|
return torch.stack(intermediate), torch.stack(intermediate_reference_points), torch.stack(intermediate_samples) |
|
|
|
return output, reference_points, samples_keep |
|
|
|
|
|
def _get_clones(module, N): |
|
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) |
|
|
|
|
|
def _get_activation_fn(activation): |
|
"""Return an activation function given a string""" |
|
if activation == "relu": |
|
return F.relu |
|
if activation == "gelu": |
|
return F.gelu |
|
if activation == "glu": |
|
return F.glu |
|
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") |
|
|
|
|
|
def build_deforamble_transformer(args): |
|
return DeformableTransformer( |
|
d_model=args.hidden_dim, |
|
nhead=args.nheads, |
|
num_encoder_layers=args.enc_layers, |
|
num_decoder_layers=args.dec_layers, |
|
dim_feedforward=args.dim_feedforward, |
|
dropout=args.dropout, |
|
activation="relu", |
|
return_intermediate_dec=True, |
|
num_feature_levels=args.num_feature_levels, |
|
dec_n_points=args.dec_n_points, |
|
enc_n_points=args.enc_n_points, |
|
two_stage=args.two_stage, |
|
two_stage_num_proposals=args.num_queries) |
|
|