|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Run BERT on SQuAD 1.1 and SQuAD 2.0.""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import collections |
|
import json |
|
import math |
|
import os |
|
import random |
|
import modeling |
|
import optimization |
|
import tokenization |
|
import six |
|
import tensorflow as tf |
|
|
|
flags = tf.flags |
|
|
|
FLAGS = flags.FLAGS |
|
|
|
|
|
flags.DEFINE_string( |
|
"bert_config_file", None, |
|
"The config json file corresponding to the pre-trained BERT model. " |
|
"This specifies the model architecture.") |
|
|
|
flags.DEFINE_string("vocab_file", None, |
|
"The vocabulary file that the BERT model was trained on.") |
|
|
|
flags.DEFINE_string( |
|
"output_dir", None, |
|
"The output directory where the model checkpoints will be written.") |
|
|
|
|
|
flags.DEFINE_string("train_file", None, |
|
"SQuAD json for training. E.g., train-v1.1.json") |
|
|
|
flags.DEFINE_string( |
|
"predict_file", None, |
|
"SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json") |
|
|
|
flags.DEFINE_string( |
|
"init_checkpoint", None, |
|
"Initial checkpoint (usually from a pre-trained BERT model).") |
|
|
|
flags.DEFINE_bool( |
|
"do_lower_case", True, |
|
"Whether to lower case the input text. Should be True for uncased " |
|
"models and False for cased models.") |
|
|
|
flags.DEFINE_integer( |
|
"max_seq_length", 384, |
|
"The maximum total input sequence length after WordPiece tokenization. " |
|
"Sequences longer than this will be truncated, and sequences shorter " |
|
"than this will be padded.") |
|
|
|
flags.DEFINE_integer( |
|
"doc_stride", 128, |
|
"When splitting up a long document into chunks, how much stride to " |
|
"take between chunks.") |
|
|
|
flags.DEFINE_integer( |
|
"max_query_length", 64, |
|
"The maximum number of tokens for the question. Questions longer than " |
|
"this will be truncated to this length.") |
|
|
|
flags.DEFINE_bool("do_train", False, "Whether to run training.") |
|
|
|
flags.DEFINE_bool("do_predict", False, "Whether to run eval on the dev set.") |
|
|
|
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.") |
|
|
|
flags.DEFINE_integer("predict_batch_size", 8, |
|
"Total batch size for predictions.") |
|
|
|
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.") |
|
|
|
flags.DEFINE_float("num_train_epochs", 3.0, |
|
"Total number of training epochs to perform.") |
|
|
|
flags.DEFINE_float( |
|
"warmup_proportion", 0.1, |
|
"Proportion of training to perform linear learning rate warmup for. " |
|
"E.g., 0.1 = 10% of training.") |
|
|
|
flags.DEFINE_integer("save_checkpoints_steps", 1000, |
|
"How often to save the model checkpoint.") |
|
|
|
flags.DEFINE_integer("iterations_per_loop", 1000, |
|
"How many steps to make in each estimator call.") |
|
|
|
flags.DEFINE_integer( |
|
"n_best_size", 20, |
|
"The total number of n-best predictions to generate in the " |
|
"nbest_predictions.json output file.") |
|
|
|
flags.DEFINE_integer( |
|
"max_answer_length", 30, |
|
"The maximum length of an answer that can be generated. This is needed " |
|
"because the start and end predictions are not conditioned on one another.") |
|
|
|
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.") |
|
|
|
tf.flags.DEFINE_string( |
|
"tpu_name", None, |
|
"The Cloud TPU to use for training. This should be either the name " |
|
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 " |
|
"url.") |
|
|
|
tf.flags.DEFINE_string( |
|
"tpu_zone", None, |
|
"[Optional] GCE zone where the Cloud TPU is located in. If not " |
|
"specified, we will attempt to automatically detect the GCE project from " |
|
"metadata.") |
|
|
|
tf.flags.DEFINE_string( |
|
"gcp_project", None, |
|
"[Optional] Project name for the Cloud TPU-enabled project. If not " |
|
"specified, we will attempt to automatically detect the GCE project from " |
|
"metadata.") |
|
|
|
tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") |
|
|
|
flags.DEFINE_integer( |
|
"num_tpu_cores", 8, |
|
"Only used if `use_tpu` is True. Total number of TPU cores to use.") |
|
|
|
flags.DEFINE_bool( |
|
"verbose_logging", False, |
|
"If true, all of the warnings related to data processing will be printed. " |
|
"A number of warnings are expected for a normal SQuAD evaluation.") |
|
|
|
flags.DEFINE_bool( |
|
"version_2_with_negative", False, |
|
"If true, the SQuAD examples contain some that do not have an answer.") |
|
|
|
flags.DEFINE_float( |
|
"null_score_diff_threshold", 0.0, |
|
"If null_score - best_non_null is greater than the threshold predict null.") |
|
|
|
|
|
class SquadExample(object): |
|
"""A single training/test example for simple sequence classification. |
|
|
|
For examples without an answer, the start and end position are -1. |
|
""" |
|
|
|
def __init__(self, |
|
qas_id, |
|
question_text, |
|
doc_tokens, |
|
orig_answer_text=None, |
|
start_position=None, |
|
end_position=None, |
|
is_impossible=False): |
|
self.qas_id = qas_id |
|
self.question_text = question_text |
|
self.doc_tokens = doc_tokens |
|
self.orig_answer_text = orig_answer_text |
|
self.start_position = start_position |
|
self.end_position = end_position |
|
self.is_impossible = is_impossible |
|
|
|
def __str__(self): |
|
return self.__repr__() |
|
|
|
def __repr__(self): |
|
s = "" |
|
s += "qas_id: %s" % (tokenization.printable_text(self.qas_id)) |
|
s += ", question_text: %s" % ( |
|
tokenization.printable_text(self.question_text)) |
|
s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) |
|
if self.start_position: |
|
s += ", start_position: %d" % (self.start_position) |
|
if self.start_position: |
|
s += ", end_position: %d" % (self.end_position) |
|
if self.start_position: |
|
s += ", is_impossible: %r" % (self.is_impossible) |
|
return s |
|
|
|
|
|
class InputFeatures(object): |
|
"""A single set of features of data.""" |
|
|
|
def __init__(self, |
|
unique_id, |
|
example_index, |
|
doc_span_index, |
|
tokens, |
|
token_to_orig_map, |
|
token_is_max_context, |
|
input_ids, |
|
input_mask, |
|
segment_ids, |
|
start_position=None, |
|
end_position=None, |
|
is_impossible=None): |
|
self.unique_id = unique_id |
|
self.example_index = example_index |
|
self.doc_span_index = doc_span_index |
|
self.tokens = tokens |
|
self.token_to_orig_map = token_to_orig_map |
|
self.token_is_max_context = token_is_max_context |
|
self.input_ids = input_ids |
|
self.input_mask = input_mask |
|
self.segment_ids = segment_ids |
|
self.start_position = start_position |
|
self.end_position = end_position |
|
self.is_impossible = is_impossible |
|
|
|
|
|
def read_squad_examples(input_file, is_training): |
|
"""Read a SQuAD json file into a list of SquadExample.""" |
|
with tf.gfile.Open(input_file, "r") as reader: |
|
input_data = json.load(reader)["data"] |
|
|
|
def is_whitespace(c): |
|
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: |
|
return True |
|
return False |
|
|
|
examples = [] |
|
for entry in input_data: |
|
for paragraph in entry["paragraphs"]: |
|
paragraph_text = paragraph["context"] |
|
doc_tokens = [] |
|
char_to_word_offset = [] |
|
prev_is_whitespace = True |
|
for c in paragraph_text: |
|
if is_whitespace(c): |
|
prev_is_whitespace = True |
|
else: |
|
if prev_is_whitespace: |
|
doc_tokens.append(c) |
|
else: |
|
doc_tokens[-1] += c |
|
prev_is_whitespace = False |
|
char_to_word_offset.append(len(doc_tokens) - 1) |
|
|
|
for qa in paragraph["qas"]: |
|
qas_id = qa["id"] |
|
question_text = qa["question"] |
|
start_position = None |
|
end_position = None |
|
orig_answer_text = None |
|
is_impossible = False |
|
if is_training: |
|
|
|
if FLAGS.version_2_with_negative: |
|
is_impossible = qa["is_impossible"] |
|
if (len(qa["answers"]) != 1) and (not is_impossible): |
|
raise ValueError( |
|
"For training, each question should have exactly 1 answer.") |
|
if not is_impossible: |
|
answer = qa["answers"][0] |
|
orig_answer_text = answer["text"] |
|
answer_offset = answer["answer_start"] |
|
answer_length = len(orig_answer_text) |
|
start_position = char_to_word_offset[answer_offset] |
|
end_position = char_to_word_offset[answer_offset + answer_length - |
|
1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
actual_text = " ".join( |
|
doc_tokens[start_position:(end_position + 1)]) |
|
cleaned_answer_text = " ".join( |
|
tokenization.whitespace_tokenize(orig_answer_text)) |
|
if actual_text.find(cleaned_answer_text) == -1: |
|
tf.logging.warning("Could not find answer: '%s' vs. '%s'", |
|
actual_text, cleaned_answer_text) |
|
continue |
|
else: |
|
start_position = -1 |
|
end_position = -1 |
|
orig_answer_text = "" |
|
|
|
example = SquadExample( |
|
qas_id=qas_id, |
|
question_text=question_text, |
|
doc_tokens=doc_tokens, |
|
orig_answer_text=orig_answer_text, |
|
start_position=start_position, |
|
end_position=end_position, |
|
is_impossible=is_impossible) |
|
examples.append(example) |
|
|
|
return examples |
|
|
|
|
|
def convert_examples_to_features(examples, tokenizer, max_seq_length, |
|
doc_stride, max_query_length, is_training, |
|
output_fn): |
|
"""Loads a data file into a list of `InputBatch`s.""" |
|
|
|
unique_id = 1000000000 |
|
|
|
for (example_index, example) in enumerate(examples): |
|
query_tokens = tokenizer.tokenize(example.question_text) |
|
|
|
if len(query_tokens) > max_query_length: |
|
query_tokens = query_tokens[0:max_query_length] |
|
|
|
tok_to_orig_index = [] |
|
orig_to_tok_index = [] |
|
all_doc_tokens = [] |
|
for (i, token) in enumerate(example.doc_tokens): |
|
orig_to_tok_index.append(len(all_doc_tokens)) |
|
sub_tokens = tokenizer.tokenize(token) |
|
for sub_token in sub_tokens: |
|
tok_to_orig_index.append(i) |
|
all_doc_tokens.append(sub_token) |
|
|
|
tok_start_position = None |
|
tok_end_position = None |
|
if is_training and example.is_impossible: |
|
tok_start_position = -1 |
|
tok_end_position = -1 |
|
if is_training and not example.is_impossible: |
|
tok_start_position = orig_to_tok_index[example.start_position] |
|
if example.end_position < len(example.doc_tokens) - 1: |
|
tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 |
|
else: |
|
tok_end_position = len(all_doc_tokens) - 1 |
|
(tok_start_position, tok_end_position) = _improve_answer_span( |
|
all_doc_tokens, tok_start_position, tok_end_position, tokenizer, |
|
example.orig_answer_text) |
|
|
|
|
|
max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 |
|
|
|
|
|
|
|
|
|
_DocSpan = collections.namedtuple( |
|
"DocSpan", ["start", "length"]) |
|
doc_spans = [] |
|
start_offset = 0 |
|
while start_offset < len(all_doc_tokens): |
|
length = len(all_doc_tokens) - start_offset |
|
if length > max_tokens_for_doc: |
|
length = max_tokens_for_doc |
|
doc_spans.append(_DocSpan(start=start_offset, length=length)) |
|
if start_offset + length == len(all_doc_tokens): |
|
break |
|
start_offset += min(length, doc_stride) |
|
|
|
for (doc_span_index, doc_span) in enumerate(doc_spans): |
|
tokens = [] |
|
token_to_orig_map = {} |
|
token_is_max_context = {} |
|
segment_ids = [] |
|
tokens.append("[CLS]") |
|
segment_ids.append(0) |
|
for token in query_tokens: |
|
tokens.append(token) |
|
segment_ids.append(0) |
|
tokens.append("[SEP]") |
|
segment_ids.append(0) |
|
|
|
for i in range(doc_span.length): |
|
split_token_index = doc_span.start + i |
|
token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] |
|
|
|
is_max_context = _check_is_max_context(doc_spans, doc_span_index, |
|
split_token_index) |
|
token_is_max_context[len(tokens)] = is_max_context |
|
tokens.append(all_doc_tokens[split_token_index]) |
|
segment_ids.append(1) |
|
tokens.append("[SEP]") |
|
segment_ids.append(1) |
|
|
|
input_ids = tokenizer.convert_tokens_to_ids(tokens) |
|
|
|
|
|
|
|
input_mask = [1] * len(input_ids) |
|
|
|
|
|
while len(input_ids) < max_seq_length: |
|
input_ids.append(0) |
|
input_mask.append(0) |
|
segment_ids.append(0) |
|
|
|
assert len(input_ids) == max_seq_length |
|
assert len(input_mask) == max_seq_length |
|
assert len(segment_ids) == max_seq_length |
|
|
|
start_position = None |
|
end_position = None |
|
if is_training and not example.is_impossible: |
|
|
|
|
|
doc_start = doc_span.start |
|
doc_end = doc_span.start + doc_span.length - 1 |
|
out_of_span = False |
|
if not (tok_start_position >= doc_start and |
|
tok_end_position <= doc_end): |
|
out_of_span = True |
|
if out_of_span: |
|
start_position = 0 |
|
end_position = 0 |
|
else: |
|
doc_offset = len(query_tokens) + 2 |
|
start_position = tok_start_position - doc_start + doc_offset |
|
end_position = tok_end_position - doc_start + doc_offset |
|
|
|
if is_training and example.is_impossible: |
|
start_position = 0 |
|
end_position = 0 |
|
|
|
if example_index < 20: |
|
tf.logging.info("*** Example ***") |
|
tf.logging.info("unique_id: %s" % (unique_id)) |
|
tf.logging.info("example_index: %s" % (example_index)) |
|
tf.logging.info("doc_span_index: %s" % (doc_span_index)) |
|
tf.logging.info("tokens: %s" % " ".join( |
|
[tokenization.printable_text(x) for x in tokens])) |
|
tf.logging.info("token_to_orig_map: %s" % " ".join( |
|
["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)])) |
|
tf.logging.info("token_is_max_context: %s" % " ".join([ |
|
"%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context) |
|
])) |
|
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) |
|
tf.logging.info( |
|
"input_mask: %s" % " ".join([str(x) for x in input_mask])) |
|
tf.logging.info( |
|
"segment_ids: %s" % " ".join([str(x) for x in segment_ids])) |
|
if is_training and example.is_impossible: |
|
tf.logging.info("impossible example") |
|
if is_training and not example.is_impossible: |
|
answer_text = " ".join(tokens[start_position:(end_position + 1)]) |
|
tf.logging.info("start_position: %d" % (start_position)) |
|
tf.logging.info("end_position: %d" % (end_position)) |
|
tf.logging.info( |
|
"answer: %s" % (tokenization.printable_text(answer_text))) |
|
|
|
feature = InputFeatures( |
|
unique_id=unique_id, |
|
example_index=example_index, |
|
doc_span_index=doc_span_index, |
|
tokens=tokens, |
|
token_to_orig_map=token_to_orig_map, |
|
token_is_max_context=token_is_max_context, |
|
input_ids=input_ids, |
|
input_mask=input_mask, |
|
segment_ids=segment_ids, |
|
start_position=start_position, |
|
end_position=end_position, |
|
is_impossible=example.is_impossible) |
|
|
|
|
|
output_fn(feature) |
|
|
|
unique_id += 1 |
|
|
|
|
|
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, |
|
orig_answer_text): |
|
"""Returns tokenized answer spans that better match the annotated answer.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) |
|
|
|
for new_start in range(input_start, input_end + 1): |
|
for new_end in range(input_end, new_start - 1, -1): |
|
text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) |
|
if text_span == tok_answer_text: |
|
return (new_start, new_end) |
|
|
|
return (input_start, input_end) |
|
|
|
|
|
def _check_is_max_context(doc_spans, cur_span_index, position): |
|
"""Check if this is the 'max context' doc span for the token.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
best_score = None |
|
best_span_index = None |
|
for (span_index, doc_span) in enumerate(doc_spans): |
|
end = doc_span.start + doc_span.length - 1 |
|
if position < doc_span.start: |
|
continue |
|
if position > end: |
|
continue |
|
num_left_context = position - doc_span.start |
|
num_right_context = end - position |
|
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length |
|
if best_score is None or score > best_score: |
|
best_score = score |
|
best_span_index = span_index |
|
|
|
return cur_span_index == best_span_index |
|
|
|
|
|
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, |
|
use_one_hot_embeddings): |
|
"""Creates a classification model.""" |
|
model = modeling.BertModel( |
|
config=bert_config, |
|
is_training=is_training, |
|
input_ids=input_ids, |
|
input_mask=input_mask, |
|
token_type_ids=segment_ids, |
|
use_one_hot_embeddings=use_one_hot_embeddings) |
|
|
|
final_hidden = model.get_sequence_output() |
|
|
|
final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3) |
|
batch_size = final_hidden_shape[0] |
|
seq_length = final_hidden_shape[1] |
|
hidden_size = final_hidden_shape[2] |
|
|
|
output_weights = tf.get_variable( |
|
"cls/squad/output_weights", [2, hidden_size], |
|
initializer=tf.truncated_normal_initializer(stddev=0.02)) |
|
|
|
output_bias = tf.get_variable( |
|
"cls/squad/output_bias", [2], initializer=tf.zeros_initializer()) |
|
|
|
final_hidden_matrix = tf.reshape(final_hidden, |
|
[batch_size * seq_length, hidden_size]) |
|
logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True) |
|
logits = tf.nn.bias_add(logits, output_bias) |
|
|
|
logits = tf.reshape(logits, [batch_size, seq_length, 2]) |
|
logits = tf.transpose(logits, [2, 0, 1]) |
|
|
|
unstacked_logits = tf.unstack(logits, axis=0) |
|
|
|
(start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1]) |
|
|
|
return (start_logits, end_logits) |
|
|
|
|
|
def model_fn_builder(bert_config, init_checkpoint, learning_rate, |
|
num_train_steps, num_warmup_steps, use_tpu, |
|
use_one_hot_embeddings): |
|
"""Returns `model_fn` closure for TPUEstimator.""" |
|
|
|
def model_fn(features, labels, mode, params): |
|
"""The `model_fn` for TPUEstimator.""" |
|
|
|
tf.logging.info("*** Features ***") |
|
for name in sorted(features.keys()): |
|
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) |
|
|
|
unique_ids = features["unique_ids"] |
|
input_ids = features["input_ids"] |
|
input_mask = features["input_mask"] |
|
segment_ids = features["segment_ids"] |
|
|
|
is_training = (mode == tf.estimator.ModeKeys.TRAIN) |
|
|
|
(start_logits, end_logits) = create_model( |
|
bert_config=bert_config, |
|
is_training=is_training, |
|
input_ids=input_ids, |
|
input_mask=input_mask, |
|
segment_ids=segment_ids, |
|
use_one_hot_embeddings=use_one_hot_embeddings) |
|
|
|
tvars = tf.trainable_variables() |
|
|
|
initialized_variable_names = {} |
|
scaffold_fn = None |
|
if init_checkpoint: |
|
(assignment_map, initialized_variable_names |
|
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) |
|
if use_tpu: |
|
|
|
def tpu_scaffold(): |
|
tf.train.init_from_checkpoint(init_checkpoint, assignment_map) |
|
return tf.train.Scaffold() |
|
|
|
scaffold_fn = tpu_scaffold |
|
else: |
|
tf.train.init_from_checkpoint(init_checkpoint, assignment_map) |
|
|
|
tf.logging.info("**** Trainable Variables ****") |
|
for var in tvars: |
|
init_string = "" |
|
if var.name in initialized_variable_names: |
|
init_string = ", *INIT_FROM_CKPT*" |
|
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, |
|
init_string) |
|
|
|
output_spec = None |
|
if mode == tf.estimator.ModeKeys.TRAIN: |
|
seq_length = modeling.get_shape_list(input_ids)[1] |
|
|
|
def compute_loss(logits, positions): |
|
one_hot_positions = tf.one_hot( |
|
positions, depth=seq_length, dtype=tf.float32) |
|
log_probs = tf.nn.log_softmax(logits, axis=-1) |
|
loss = -tf.reduce_mean( |
|
tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) |
|
return loss |
|
|
|
start_positions = features["start_positions"] |
|
end_positions = features["end_positions"] |
|
|
|
start_loss = compute_loss(start_logits, start_positions) |
|
end_loss = compute_loss(end_logits, end_positions) |
|
|
|
total_loss = (start_loss + end_loss) / 2.0 |
|
|
|
train_op = optimization.create_optimizer( |
|
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) |
|
|
|
output_spec = tf.contrib.tpu.TPUEstimatorSpec( |
|
mode=mode, |
|
loss=total_loss, |
|
train_op=train_op, |
|
scaffold_fn=scaffold_fn) |
|
elif mode == tf.estimator.ModeKeys.PREDICT: |
|
predictions = { |
|
"unique_ids": unique_ids, |
|
"start_logits": start_logits, |
|
"end_logits": end_logits, |
|
} |
|
output_spec = tf.contrib.tpu.TPUEstimatorSpec( |
|
mode=mode, predictions=predictions, scaffold_fn=scaffold_fn) |
|
else: |
|
raise ValueError( |
|
"Only TRAIN and PREDICT modes are supported: %s" % (mode)) |
|
|
|
return output_spec |
|
|
|
return model_fn |
|
|
|
|
|
def input_fn_builder(input_file, seq_length, is_training, drop_remainder): |
|
"""Creates an `input_fn` closure to be passed to TPUEstimator.""" |
|
|
|
name_to_features = { |
|
"unique_ids": tf.FixedLenFeature([], tf.int64), |
|
"input_ids": tf.FixedLenFeature([seq_length], tf.int64), |
|
"input_mask": tf.FixedLenFeature([seq_length], tf.int64), |
|
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64), |
|
} |
|
|
|
if is_training: |
|
name_to_features["start_positions"] = tf.FixedLenFeature([], tf.int64) |
|
name_to_features["end_positions"] = tf.FixedLenFeature([], tf.int64) |
|
|
|
def _decode_record(record, name_to_features): |
|
"""Decodes a record to a TensorFlow example.""" |
|
example = tf.parse_single_example(record, name_to_features) |
|
|
|
|
|
|
|
for name in list(example.keys()): |
|
t = example[name] |
|
if t.dtype == tf.int64: |
|
t = tf.to_int32(t) |
|
example[name] = t |
|
|
|
return example |
|
|
|
def input_fn(params): |
|
"""The actual input function.""" |
|
batch_size = params["batch_size"] |
|
|
|
|
|
|
|
d = tf.data.TFRecordDataset(input_file) |
|
if is_training: |
|
d = d.repeat() |
|
d = d.shuffle(buffer_size=100) |
|
|
|
d = d.apply( |
|
tf.contrib.data.map_and_batch( |
|
lambda record: _decode_record(record, name_to_features), |
|
batch_size=batch_size, |
|
drop_remainder=drop_remainder)) |
|
|
|
return d |
|
|
|
return input_fn |
|
|
|
|
|
RawResult = collections.namedtuple("RawResult", |
|
["unique_id", "start_logits", "end_logits"]) |
|
|
|
|
|
def write_predictions(all_examples, all_features, all_results, n_best_size, |
|
max_answer_length, do_lower_case, output_prediction_file, |
|
output_nbest_file, output_null_log_odds_file): |
|
"""Write final predictions to the json file and log-odds of null if needed.""" |
|
tf.logging.info("Writing predictions to: %s" % (output_prediction_file)) |
|
tf.logging.info("Writing nbest to: %s" % (output_nbest_file)) |
|
|
|
example_index_to_features = collections.defaultdict(list) |
|
for feature in all_features: |
|
example_index_to_features[feature.example_index].append(feature) |
|
|
|
unique_id_to_result = {} |
|
for result in all_results: |
|
unique_id_to_result[result.unique_id] = result |
|
|
|
_PrelimPrediction = collections.namedtuple( |
|
"PrelimPrediction", |
|
["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) |
|
|
|
all_predictions = collections.OrderedDict() |
|
all_nbest_json = collections.OrderedDict() |
|
scores_diff_json = collections.OrderedDict() |
|
|
|
for (example_index, example) in enumerate(all_examples): |
|
features = example_index_to_features[example_index] |
|
|
|
prelim_predictions = [] |
|
|
|
score_null = 1000000 |
|
min_null_feature_index = 0 |
|
null_start_logit = 0 |
|
null_end_logit = 0 |
|
for (feature_index, feature) in enumerate(features): |
|
result = unique_id_to_result[feature.unique_id] |
|
start_indexes = _get_best_indexes(result.start_logits, n_best_size) |
|
end_indexes = _get_best_indexes(result.end_logits, n_best_size) |
|
|
|
if FLAGS.version_2_with_negative: |
|
feature_null_score = result.start_logits[0] + result.end_logits[0] |
|
if feature_null_score < score_null: |
|
score_null = feature_null_score |
|
min_null_feature_index = feature_index |
|
null_start_logit = result.start_logits[0] |
|
null_end_logit = result.end_logits[0] |
|
for start_index in start_indexes: |
|
for end_index in end_indexes: |
|
|
|
|
|
|
|
if start_index >= len(feature.tokens): |
|
continue |
|
if end_index >= len(feature.tokens): |
|
continue |
|
if start_index not in feature.token_to_orig_map: |
|
continue |
|
if end_index not in feature.token_to_orig_map: |
|
continue |
|
if not feature.token_is_max_context.get(start_index, False): |
|
continue |
|
if end_index < start_index: |
|
continue |
|
length = end_index - start_index + 1 |
|
if length > max_answer_length: |
|
continue |
|
prelim_predictions.append( |
|
_PrelimPrediction( |
|
feature_index=feature_index, |
|
start_index=start_index, |
|
end_index=end_index, |
|
start_logit=result.start_logits[start_index], |
|
end_logit=result.end_logits[end_index])) |
|
|
|
if FLAGS.version_2_with_negative: |
|
prelim_predictions.append( |
|
_PrelimPrediction( |
|
feature_index=min_null_feature_index, |
|
start_index=0, |
|
end_index=0, |
|
start_logit=null_start_logit, |
|
end_logit=null_end_logit)) |
|
prelim_predictions = sorted( |
|
prelim_predictions, |
|
key=lambda x: (x.start_logit + x.end_logit), |
|
reverse=True) |
|
|
|
_NbestPrediction = collections.namedtuple( |
|
"NbestPrediction", ["text", "start_logit", "end_logit"]) |
|
|
|
seen_predictions = {} |
|
nbest = [] |
|
for pred in prelim_predictions: |
|
if len(nbest) >= n_best_size: |
|
break |
|
feature = features[pred.feature_index] |
|
if pred.start_index > 0: |
|
tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] |
|
orig_doc_start = feature.token_to_orig_map[pred.start_index] |
|
orig_doc_end = feature.token_to_orig_map[pred.end_index] |
|
orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] |
|
tok_text = " ".join(tok_tokens) |
|
|
|
|
|
tok_text = tok_text.replace(" ##", "") |
|
tok_text = tok_text.replace("##", "") |
|
|
|
|
|
tok_text = tok_text.strip() |
|
tok_text = " ".join(tok_text.split()) |
|
orig_text = " ".join(orig_tokens) |
|
|
|
final_text = get_final_text(tok_text, orig_text, do_lower_case) |
|
if final_text in seen_predictions: |
|
continue |
|
|
|
seen_predictions[final_text] = True |
|
else: |
|
final_text = "" |
|
seen_predictions[final_text] = True |
|
|
|
nbest.append( |
|
_NbestPrediction( |
|
text=final_text, |
|
start_logit=pred.start_logit, |
|
end_logit=pred.end_logit)) |
|
|
|
|
|
if FLAGS.version_2_with_negative: |
|
if "" not in seen_predictions: |
|
nbest.append( |
|
_NbestPrediction( |
|
text="", start_logit=null_start_logit, |
|
end_logit=null_end_logit)) |
|
|
|
|
|
if not nbest: |
|
nbest.append( |
|
_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) |
|
|
|
assert len(nbest) >= 1 |
|
|
|
total_scores = [] |
|
best_non_null_entry = None |
|
for entry in nbest: |
|
total_scores.append(entry.start_logit + entry.end_logit) |
|
if not best_non_null_entry: |
|
if entry.text: |
|
best_non_null_entry = entry |
|
|
|
probs = _compute_softmax(total_scores) |
|
|
|
nbest_json = [] |
|
for (i, entry) in enumerate(nbest): |
|
output = collections.OrderedDict() |
|
output["text"] = entry.text |
|
output["probability"] = probs[i] |
|
output["start_logit"] = entry.start_logit |
|
output["end_logit"] = entry.end_logit |
|
nbest_json.append(output) |
|
|
|
assert len(nbest_json) >= 1 |
|
|
|
if not FLAGS.version_2_with_negative: |
|
all_predictions[example.qas_id] = nbest_json[0]["text"] |
|
else: |
|
|
|
score_diff = score_null - best_non_null_entry.start_logit - ( |
|
best_non_null_entry.end_logit) |
|
scores_diff_json[example.qas_id] = score_diff |
|
if score_diff > FLAGS.null_score_diff_threshold: |
|
all_predictions[example.qas_id] = "" |
|
else: |
|
all_predictions[example.qas_id] = best_non_null_entry.text |
|
|
|
all_nbest_json[example.qas_id] = nbest_json |
|
|
|
with tf.gfile.GFile(output_prediction_file, "w") as writer: |
|
writer.write(json.dumps(all_predictions, indent=4) + "\n") |
|
|
|
with tf.gfile.GFile(output_nbest_file, "w") as writer: |
|
writer.write(json.dumps(all_nbest_json, indent=4) + "\n") |
|
|
|
if FLAGS.version_2_with_negative: |
|
with tf.gfile.GFile(output_null_log_odds_file, "w") as writer: |
|
writer.write(json.dumps(scores_diff_json, indent=4) + "\n") |
|
|
|
|
|
def get_final_text(pred_text, orig_text, do_lower_case): |
|
"""Project the tokenized prediction back to the original text.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _strip_spaces(text): |
|
ns_chars = [] |
|
ns_to_s_map = collections.OrderedDict() |
|
for (i, c) in enumerate(text): |
|
if c == " ": |
|
continue |
|
ns_to_s_map[len(ns_chars)] = i |
|
ns_chars.append(c) |
|
ns_text = "".join(ns_chars) |
|
return (ns_text, ns_to_s_map) |
|
|
|
|
|
|
|
|
|
|
|
tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) |
|
|
|
tok_text = " ".join(tokenizer.tokenize(orig_text)) |
|
|
|
start_position = tok_text.find(pred_text) |
|
if start_position == -1: |
|
if FLAGS.verbose_logging: |
|
tf.logging.info( |
|
"Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) |
|
return orig_text |
|
end_position = start_position + len(pred_text) - 1 |
|
|
|
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) |
|
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) |
|
|
|
if len(orig_ns_text) != len(tok_ns_text): |
|
if FLAGS.verbose_logging: |
|
tf.logging.info("Length not equal after stripping spaces: '%s' vs '%s'", |
|
orig_ns_text, tok_ns_text) |
|
return orig_text |
|
|
|
|
|
|
|
tok_s_to_ns_map = {} |
|
for (i, tok_index) in six.iteritems(tok_ns_to_s_map): |
|
tok_s_to_ns_map[tok_index] = i |
|
|
|
orig_start_position = None |
|
if start_position in tok_s_to_ns_map: |
|
ns_start_position = tok_s_to_ns_map[start_position] |
|
if ns_start_position in orig_ns_to_s_map: |
|
orig_start_position = orig_ns_to_s_map[ns_start_position] |
|
|
|
if orig_start_position is None: |
|
if FLAGS.verbose_logging: |
|
tf.logging.info("Couldn't map start position") |
|
return orig_text |
|
|
|
orig_end_position = None |
|
if end_position in tok_s_to_ns_map: |
|
ns_end_position = tok_s_to_ns_map[end_position] |
|
if ns_end_position in orig_ns_to_s_map: |
|
orig_end_position = orig_ns_to_s_map[ns_end_position] |
|
|
|
if orig_end_position is None: |
|
if FLAGS.verbose_logging: |
|
tf.logging.info("Couldn't map end position") |
|
return orig_text |
|
|
|
output_text = orig_text[orig_start_position:(orig_end_position + 1)] |
|
return output_text |
|
|
|
|
|
def _get_best_indexes(logits, n_best_size): |
|
"""Get the n-best logits from a list.""" |
|
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) |
|
|
|
best_indexes = [] |
|
for i in range(len(index_and_score)): |
|
if i >= n_best_size: |
|
break |
|
best_indexes.append(index_and_score[i][0]) |
|
return best_indexes |
|
|
|
|
|
def _compute_softmax(scores): |
|
"""Compute softmax probability over raw logits.""" |
|
if not scores: |
|
return [] |
|
|
|
max_score = None |
|
for score in scores: |
|
if max_score is None or score > max_score: |
|
max_score = score |
|
|
|
exp_scores = [] |
|
total_sum = 0.0 |
|
for score in scores: |
|
x = math.exp(score - max_score) |
|
exp_scores.append(x) |
|
total_sum += x |
|
|
|
probs = [] |
|
for score in exp_scores: |
|
probs.append(score / total_sum) |
|
return probs |
|
|
|
|
|
class FeatureWriter(object): |
|
"""Writes InputFeature to TF example file.""" |
|
|
|
def __init__(self, filename, is_training): |
|
self.filename = filename |
|
self.is_training = is_training |
|
self.num_features = 0 |
|
self._writer = tf.python_io.TFRecordWriter(filename) |
|
|
|
def process_feature(self, feature): |
|
"""Write a InputFeature to the TFRecordWriter as a tf.train.Example.""" |
|
self.num_features += 1 |
|
|
|
def create_int_feature(values): |
|
feature = tf.train.Feature( |
|
int64_list=tf.train.Int64List(value=list(values))) |
|
return feature |
|
|
|
features = collections.OrderedDict() |
|
features["unique_ids"] = create_int_feature([feature.unique_id]) |
|
features["input_ids"] = create_int_feature(feature.input_ids) |
|
features["input_mask"] = create_int_feature(feature.input_mask) |
|
features["segment_ids"] = create_int_feature(feature.segment_ids) |
|
|
|
if self.is_training: |
|
features["start_positions"] = create_int_feature([feature.start_position]) |
|
features["end_positions"] = create_int_feature([feature.end_position]) |
|
impossible = 0 |
|
if feature.is_impossible: |
|
impossible = 1 |
|
features["is_impossible"] = create_int_feature([impossible]) |
|
|
|
tf_example = tf.train.Example(features=tf.train.Features(feature=features)) |
|
self._writer.write(tf_example.SerializeToString()) |
|
|
|
def close(self): |
|
self._writer.close() |
|
|
|
|
|
def validate_flags_or_throw(bert_config): |
|
"""Validate the input FLAGS or throw an exception.""" |
|
tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case, |
|
FLAGS.init_checkpoint) |
|
|
|
if not FLAGS.do_train and not FLAGS.do_predict: |
|
raise ValueError("At least one of `do_train` or `do_predict` must be True.") |
|
|
|
if FLAGS.do_train: |
|
if not FLAGS.train_file: |
|
raise ValueError( |
|
"If `do_train` is True, then `train_file` must be specified.") |
|
if FLAGS.do_predict: |
|
if not FLAGS.predict_file: |
|
raise ValueError( |
|
"If `do_predict` is True, then `predict_file` must be specified.") |
|
|
|
if FLAGS.max_seq_length > bert_config.max_position_embeddings: |
|
raise ValueError( |
|
"Cannot use sequence length %d because the BERT model " |
|
"was only trained up to sequence length %d" % |
|
(FLAGS.max_seq_length, bert_config.max_position_embeddings)) |
|
|
|
if FLAGS.max_seq_length <= FLAGS.max_query_length + 3: |
|
raise ValueError( |
|
"The max_seq_length (%d) must be greater than max_query_length " |
|
"(%d) + 3" % (FLAGS.max_seq_length, FLAGS.max_query_length)) |
|
|
|
|
|
def main(_): |
|
tf.logging.set_verbosity(tf.logging.INFO) |
|
|
|
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) |
|
|
|
validate_flags_or_throw(bert_config) |
|
|
|
tf.gfile.MakeDirs(FLAGS.output_dir) |
|
|
|
tokenizer = tokenization.FullTokenizer( |
|
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) |
|
|
|
tpu_cluster_resolver = None |
|
if FLAGS.use_tpu and FLAGS.tpu_name: |
|
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( |
|
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) |
|
|
|
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 |
|
run_config = tf.contrib.tpu.RunConfig( |
|
cluster=tpu_cluster_resolver, |
|
master=FLAGS.master, |
|
model_dir=FLAGS.output_dir, |
|
save_checkpoints_steps=FLAGS.save_checkpoints_steps, |
|
tpu_config=tf.contrib.tpu.TPUConfig( |
|
iterations_per_loop=FLAGS.iterations_per_loop, |
|
num_shards=FLAGS.num_tpu_cores, |
|
per_host_input_for_training=is_per_host)) |
|
|
|
train_examples = None |
|
num_train_steps = None |
|
num_warmup_steps = None |
|
if FLAGS.do_train: |
|
train_examples = read_squad_examples( |
|
input_file=FLAGS.train_file, is_training=True) |
|
num_train_steps = int( |
|
len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs) |
|
num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) |
|
|
|
|
|
|
|
rng = random.Random(12345) |
|
rng.shuffle(train_examples) |
|
|
|
model_fn = model_fn_builder( |
|
bert_config=bert_config, |
|
init_checkpoint=FLAGS.init_checkpoint, |
|
learning_rate=FLAGS.learning_rate, |
|
num_train_steps=num_train_steps, |
|
num_warmup_steps=num_warmup_steps, |
|
use_tpu=FLAGS.use_tpu, |
|
use_one_hot_embeddings=FLAGS.use_tpu) |
|
|
|
|
|
|
|
estimator = tf.contrib.tpu.TPUEstimator( |
|
use_tpu=FLAGS.use_tpu, |
|
model_fn=model_fn, |
|
config=run_config, |
|
train_batch_size=FLAGS.train_batch_size, |
|
predict_batch_size=FLAGS.predict_batch_size) |
|
|
|
if FLAGS.do_train: |
|
|
|
|
|
train_writer = FeatureWriter( |
|
filename=os.path.join(FLAGS.output_dir, "train.tf_record"), |
|
is_training=True) |
|
convert_examples_to_features( |
|
examples=train_examples, |
|
tokenizer=tokenizer, |
|
max_seq_length=FLAGS.max_seq_length, |
|
doc_stride=FLAGS.doc_stride, |
|
max_query_length=FLAGS.max_query_length, |
|
is_training=True, |
|
output_fn=train_writer.process_feature) |
|
train_writer.close() |
|
|
|
tf.logging.info("***** Running training *****") |
|
tf.logging.info(" Num orig examples = %d", len(train_examples)) |
|
tf.logging.info(" Num split examples = %d", train_writer.num_features) |
|
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) |
|
tf.logging.info(" Num steps = %d", num_train_steps) |
|
del train_examples |
|
|
|
train_input_fn = input_fn_builder( |
|
input_file=train_writer.filename, |
|
seq_length=FLAGS.max_seq_length, |
|
is_training=True, |
|
drop_remainder=True) |
|
estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) |
|
|
|
if FLAGS.do_predict: |
|
eval_examples = read_squad_examples( |
|
input_file=FLAGS.predict_file, is_training=False) |
|
|
|
eval_writer = FeatureWriter( |
|
filename=os.path.join(FLAGS.output_dir, "eval.tf_record"), |
|
is_training=False) |
|
eval_features = [] |
|
|
|
def append_feature(feature): |
|
eval_features.append(feature) |
|
eval_writer.process_feature(feature) |
|
|
|
convert_examples_to_features( |
|
examples=eval_examples, |
|
tokenizer=tokenizer, |
|
max_seq_length=FLAGS.max_seq_length, |
|
doc_stride=FLAGS.doc_stride, |
|
max_query_length=FLAGS.max_query_length, |
|
is_training=False, |
|
output_fn=append_feature) |
|
eval_writer.close() |
|
|
|
tf.logging.info("***** Running predictions *****") |
|
tf.logging.info(" Num orig examples = %d", len(eval_examples)) |
|
tf.logging.info(" Num split examples = %d", len(eval_features)) |
|
tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size) |
|
|
|
all_results = [] |
|
|
|
predict_input_fn = input_fn_builder( |
|
input_file=eval_writer.filename, |
|
seq_length=FLAGS.max_seq_length, |
|
is_training=False, |
|
drop_remainder=False) |
|
|
|
|
|
|
|
all_results = [] |
|
for result in estimator.predict( |
|
predict_input_fn, yield_single_examples=True): |
|
if len(all_results) % 1000 == 0: |
|
tf.logging.info("Processing example: %d" % (len(all_results))) |
|
unique_id = int(result["unique_ids"]) |
|
start_logits = [float(x) for x in result["start_logits"].flat] |
|
end_logits = [float(x) for x in result["end_logits"].flat] |
|
all_results.append( |
|
RawResult( |
|
unique_id=unique_id, |
|
start_logits=start_logits, |
|
end_logits=end_logits)) |
|
|
|
output_prediction_file = os.path.join(FLAGS.output_dir, "predictions.json") |
|
output_nbest_file = os.path.join(FLAGS.output_dir, "nbest_predictions.json") |
|
output_null_log_odds_file = os.path.join(FLAGS.output_dir, "null_odds.json") |
|
|
|
write_predictions(eval_examples, eval_features, all_results, |
|
FLAGS.n_best_size, FLAGS.max_answer_length, |
|
FLAGS.do_lower_case, output_prediction_file, |
|
output_nbest_file, output_null_log_odds_file) |
|
|
|
|
|
if __name__ == "__main__": |
|
flags.mark_flag_as_required("vocab_file") |
|
flags.mark_flag_as_required("bert_config_file") |
|
flags.mark_flag_as_required("output_dir") |
|
tf.app.run() |
|
|