VRIS_vip / .history /mbench /gpt_ref-ytvos_numbered_cy_20250130183916.py
dianecy's picture
Add files using upload-large-folder tool
3b5fc39 verified
import os
import sys
from os import path as osp
from io import BytesIO
from mbench.ytvos_ref import build as build_ytvos_ref
import argparse
import opts
import sys
from pathlib import Path
import os
from os import path as osp
import skimage
from io import BytesIO
import numpy as np
import pandas as pd
import regex as re
import json
import cv2
from PIL import Image, ImageDraw
import torch
from torchvision.transforms import functional as F
from skimage import measure # (pip install scikit-image)
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle
import textwrap
import ipywidgets as widgets
from IPython.display import display, clear_output
from openai import OpenAI
import base64
def number_objects_and_encode(idx, color_mask=False):
encoded_frames = {}
contoured_frames = {} # New dictionary for original images
vid_cat_cnts = {}
vid_meta = metas[idx]
vid_data = train_dataset[idx]
vid_id = vid_meta['video']
frame_indx = vid_meta['sample_indx']
cat_names = set(vid_meta['obj_id_cat'].values())
imgs = vid_data[0]
for cat in cat_names:
cat_frames = []
contour_frames = []
frame_cat_cnts = {}
for i in range(imgs.size(0)):
frame_name = frame_indx[i]
frame = np.copy(imgs[i].permute(1, 2, 0).numpy())
frame_for_contour = np.copy(imgs[i].permute(1, 2, 0).numpy())
frame_data = vid_data[2][frame_name]
obj_ids = list(frame_data.keys())
cat_cnt = 0
for j in range(len(obj_ids)):
obj_id = obj_ids[j]
obj_data = frame_data[obj_id]
obj_bbox = obj_data['bbox']
obj_valid = obj_data['valid']
obj_mask = obj_data['mask'].numpy().astype(np.uint8)
obj_cat = obj_data['category_name']
if obj_cat == cat and obj_valid:
cat_cnt += 1
if color_mask == False:
contours, _ = cv2.findContours(obj_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(frame, contours, -1, colors[j], 3)
for i, contour in enumerate(contours):
# ์œค๊ณฝ์„  ์ค‘์‹ฌ ๊ณ„์‚ฐ
moments = cv2.moments(contour)
if moments["m00"] != 0: # ์ค‘์‹ฌ ๊ณ„์‚ฐ ๊ฐ€๋Šฅ ์—ฌ๋ถ€ ํ™•์ธ
cx = int(moments["m10"] / moments["m00"])
cy = int(moments["m01"] / moments["m00"])
else:
cx, cy = contour[0][0] # ์ค‘์‹ฌ ๊ณ„์‚ฐ ๋ถˆ๊ฐ€์‹œ ๋Œ€์ฒด ์ขŒํ‘œ ์‚ฌ์šฉ
# ํ…์ŠคํŠธ ๋ฐฐ๊ฒฝ (๊ฒ€์€์ƒ‰ ๋ฐฐ๊ฒฝ ๋งŒ๋“ค๊ธฐ)
font = cv2.FONT_HERSHEY_SIMPLEX
text = obj_id
text_size = cv2.getTextSize(text, font, 1, 2)[0]
text_w, text_h = text_size
# ํ…์ŠคํŠธ ๋ฐฐ๊ฒฝ ๊ทธ๋ฆฌ๊ธฐ (๊ฒ€์€์ƒ‰ ๋ฐฐ๊ฒฝ)
cv2.rectangle(frame, (cx - text_w // 2 - 5, cy - text_h // 2 - 5),
(cx + text_w // 2 + 5, cy + text_h // 2 + 5), (0, 0, 0), -1)
# ํ…์ŠคํŠธ ๊ทธ๋ฆฌ๊ธฐ (ํฐ์ƒ‰ ํ…์ŠคํŠธ)
cv2.putText(frame, text, (cx - text_w // 2, cy + text_h // 2),
font, 1, (255, 255, 255), 2)
else:
alpha = 0.08
colored_obj_mask = np.zeros_like(frame)
colored_obj_mask[obj_mask == 1] = colors[j]
frame[obj_mask == 1] = (
(1 - alpha) * frame[obj_mask == 1]
+ alpha * colored_obj_mask[obj_mask == 1]
)
contours, _ = cv2.findContours(obj_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(frame, contours, -1, colors[j], 2)
cv2.drawContours(frame_for_contour, contours, -1, colors[j], 2)
if len(contours) > 0:
largest_contour = max(contours, key=cv2.contourArea)
M = cv2.moments(largest_contour)
if M["m00"] != 0:
center_x = int(M["m10"] / M["m00"])
center_y = int(M["m01"] / M["m00"])
else:
center_x, center_y = 0, 0
font = cv2.FONT_HERSHEY_SIMPLEX
text = obj_id
font_scale = 0.9
text_size = cv2.getTextSize(text, font, font_scale, 2)[0]
text_x = center_x - text_size[0] // 1 # ํ…์ŠคํŠธ์˜ ๊ฐ€๋กœ ์ค‘์‹ฌ
text_y = center_y
# text_y = center_y + text_size[1] // 2 # ํ…์ŠคํŠธ์˜ ์„ธ๋กœ ์ค‘์‹ฌ
# ํ…์ŠคํŠธ ๋ฐฐ๊ฒฝ ์‚ฌ๊ฐํ˜• ์ขŒํ‘œ ๊ณ„์‚ฐ
rect_start = (text_x - 5, text_y - text_size[1] - 5) # ๋ฐฐ๊ฒฝ ์‚ฌ๊ฐํ˜• ์ขŒ์ƒ๋‹จ
# rect_end = (text_x + text_size[0] + 5, text_y + 5)
rect_end = (text_x + text_size[0] + 5, text_y)
cv2.rectangle(frame, rect_start, rect_end, (0, 0, 0), -1)
cv2.putText(frame, text, (text_x, text_y), font, 1, (255, 255, 255), 2)
plt.figure(figsize=(12, 8))
plt.imshow(frame)
plt.title(f"frame {frame_name}")
plt.tight_layout()
plt.axis('off')
plt.show()
buffer = BytesIO()
frame = Image.fromarray(frame)
frame.save(buffer, format='jpeg')
buffer.seek(0)
cat_frames.append(base64.b64encode(buffer.read()).decode("utf-8"))
frame_cat_cnts[frame_name] = cat_cnt
buffer.seek(0) # Reuse buffer instead of creating a new one
buffer.truncate()
frame_for_contour = Image.fromarray(frame_for_contour)
frame_for_contour.save(buffer, format='jpeg')
buffer.seek(0)
contour_frames.append(base64.b64encode(buffer.read()).decode("utf-8"))
encoded_frames[cat] = cat_frames
contoured_frames[cat] = contour_frames
vid_cat_cnts[cat] = frame_cat_cnts
return encoded_frames, vid_cat_cnts, contoured_frames
if __name__ == '__main__':
parser = argparse.ArgumentParser('ReferFormer training and evaluation script', parents=[opts.get_args_parser()])
args = parser.parse_args()
#==================๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ===================
# ์ „์ฒด ๋ฐ์ดํ„ฐ์…‹
train_dataset = build_ytvos_ref(image_set = 'train', args = args)
# ์ „์ฒด ๋ฐ์ดํ„ฐ์…‹ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ
metas = train_dataset.metas
# ์ƒ‰์ƒ ํ›„๋ณด 8๊ฐœ (RGB ํ˜•์‹)
colors = [
(255, 0, 0), # Red
(0, 255, 0), # Green
(0, 0, 255), # Blue
(255, 255, 0), # Yellow
(255, 0, 255), # Magenta
(0, 255, 255), # Cyan
(128, 0, 128), # Purple
(255, 165, 0) # Orange
]