VRIS_vip / mbench /transforms_video.py
dianecy's picture
Add files using upload-large-folder tool
5c8ef86 verified
raw
history blame
19.3 kB
"""
Transforms and data augmentation for sequence level images, bboxes and masks.
"""
import random
import PIL
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as F
from util.box_ops import box_xyxy_to_cxcywh, box_iou
from util.misc import interpolate
import numpy as np
from numpy import random as rand
from PIL import Image
import cv2
class Check(object):
def __init__(self,):
pass
def __call__(self, img, target):
fields = ["labels"]
if "boxes" in target:
fields.append("boxes")
if "masks" in target:
fields.append("masks")
### check if box or mask still exist after transforms
if "boxes" in target or "masks" in target:
if "boxes" in target:
cropped_boxes = target['boxes'].reshape(-1, 2, 2)
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
else:
keep = target['masks'].flatten(1).any(1)
if False in keep:
for k in range(len(keep)):
if not keep[k] and "boxes" in target:
target['boxes'][k] = target['boxes'][k]//1000.0 # [0, 0, 0, 0]
target['valid'] = keep.to(torch.int32)
return img, target
def bbox_overlaps(bboxes1, bboxes2, mode='iou', eps=1e-6):
assert mode in ['iou', 'iof']
bboxes1 = bboxes1.astype(np.float32)
bboxes2 = bboxes2.astype(np.float32)
rows = bboxes1.shape[0]
cols = bboxes2.shape[0]
ious = np.zeros((rows, cols), dtype=np.float32)
if rows * cols == 0:
return ious
exchange = False
if bboxes1.shape[0] > bboxes2.shape[0]:
bboxes1, bboxes2 = bboxes2, bboxes1
ious = np.zeros((cols, rows), dtype=np.float32)
exchange = True
area1 = (bboxes1[:, 2] - bboxes1[:, 0]) * (bboxes1[:, 3] - bboxes1[:, 1])
area2 = (bboxes2[:, 2] - bboxes2[:, 0]) * (bboxes2[:, 3] - bboxes2[:, 1])
for i in range(bboxes1.shape[0]):
x_start = np.maximum(bboxes1[i, 0], bboxes2[:, 0])
y_start = np.maximum(bboxes1[i, 1], bboxes2[:, 1])
x_end = np.minimum(bboxes1[i, 2], bboxes2[:, 2])
y_end = np.minimum(bboxes1[i, 3], bboxes2[:, 3])
overlap = np.maximum(x_end - x_start, 0) * np.maximum(y_end - y_start, 0)
if mode == 'iou':
union = area1[i] + area2 - overlap
else:
union = area1[i] if not exchange else area2
union = np.maximum(union, eps)
ious[i, :] = overlap / union
if exchange:
ious = ious.T
return ious
def crop(clip, target, region):
cropped_image = []
for image in clip:
cropped_image.append(F.crop(image, *region))
target = target.copy()
i, j, h, w = region
# should we do something wrt the original size?
target["size"] = torch.tensor([h, w])
fields = ["labels", "area", "iscrowd"]
if "boxes" in target:
boxes = target["boxes"]
max_size = torch.as_tensor([w, h], dtype=torch.float32)
cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
cropped_boxes = cropped_boxes.clamp(min=0)
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
target["boxes"] = cropped_boxes.reshape(-1, 4)
target["area"] = area
fields.append("boxes")
if "masks" in target:
# FIXME should we update the area here if there are no boxes?
target['masks'] = target['masks'][:, i:i + h, j:j + w]
fields.append("masks")
return cropped_image, target
def hflip(clip, target):
flipped_image = []
for image in clip:
flipped_image.append(F.hflip(image))
w, h = clip[0].size
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0])
target["boxes"] = boxes
if "masks" in target:
target['masks'] = target['masks'].flip(-1)
return flipped_image, target
def vflip(image,target):
flipped_image = []
for image in clip:
flipped_image.append(F.vflip(image))
w, h = clip[0].size
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
boxes = boxes[:, [0, 3, 2, 1]] * torch.as_tensor([1, -1, 1, -1]) + torch.as_tensor([0, h, 0, h])
target["boxes"] = boxes
if "masks" in target:
target['masks'] = target['masks'].flip(1)
return flipped_image, target
def resize(clip, target, size, max_size=None):
# size can be min_size (scalar) or (w, h) tuple
def get_size_with_aspect_ratio(image_size, size, max_size=None):
w, h = image_size
if max_size is not None:
min_original_size = float(min((w, h)))
max_original_size = float(max((w, h)))
if max_original_size / min_original_size * size > max_size:
size = int(round(max_size * min_original_size / max_original_size))
if (w <= h and w == size) or (h <= w and h == size):
return (h, w)
if w < h:
ow = size
oh = int(size * h / w)
else:
oh = size
ow = int(size * w / h)
return (oh, ow)
def get_size(image_size, size, max_size=None):
if isinstance(size, (list, tuple)):
return size[::-1]
else:
return get_size_with_aspect_ratio(image_size, size, max_size)
size = get_size(clip[0].size, size, max_size)
rescaled_image = []
for image in clip:
rescaled_image.append(F.resize(image, size))
if target is None:
return rescaled_image, None
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image[0].size, clip[0].size))
ratio_width, ratio_height = ratios
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
target["boxes"] = scaled_boxes
if "area" in target:
area = target["area"]
scaled_area = area * (ratio_width * ratio_height)
target["area"] = scaled_area
h, w = size
target["size"] = torch.tensor([h, w])
if "masks" in target:
if target['masks'].shape[0]>0:
target['masks'] = interpolate(
target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5
else:
target['masks'] = torch.zeros((target['masks'].shape[0],h,w))
return rescaled_image, target
def pad(clip, target, padding):
# assumes that we only pad on the bottom right corners
padded_image = []
for image in clip:
padded_image.append(F.pad(image, (0, 0, padding[0], padding[1])))
if target is None:
return padded_image, None
target = target.copy()
# should we do something wrt the original size?
target["size"] = torch.tensor(padded_image[0].size[::-1])
if "masks" in target:
target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1]))
return padded_image, target
class RandomCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, img, target):
region = T.RandomCrop.get_params(img, self.size)
return crop(img, target, region)
class RandomSizeCrop(object):
def __init__(self, min_size: int, max_size: int):
self.min_size = min_size
self.max_size = max_size
def __call__(self, img: PIL.Image.Image, target: dict):
w = random.randint(self.min_size, min(img[0].width, self.max_size))
h = random.randint(self.min_size, min(img[0].height, self.max_size))
region = T.RandomCrop.get_params(img[0], [h, w])
return crop(img, target, region)
class CenterCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, img, target):
image_width, image_height = img.size
crop_height, crop_width = self.size
crop_top = int(round((image_height - crop_height) / 2.))
crop_left = int(round((image_width - crop_width) / 2.))
return crop(img, target, (crop_top, crop_left, crop_height, crop_width))
class MinIoURandomCrop(object):
def __init__(self, min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3):
self.min_ious = min_ious
self.sample_mode = (1, *min_ious, 0)
self.min_crop_size = min_crop_size
def __call__(self, img, target):
w,h = img.size
while True:
mode = random.choice(self.sample_mode)
self.mode = mode
if mode == 1:
return img,target
min_iou = mode
boxes = target['boxes'].numpy()
labels = target['labels']
for i in range(50):
new_w = rand.uniform(self.min_crop_size * w, w)
new_h = rand.uniform(self.min_crop_size * h, h)
if new_h / new_w < 0.5 or new_h / new_w > 2:
continue
left = rand.uniform(w - new_w)
top = rand.uniform(h - new_h)
patch = np.array((int(left), int(top), int(left + new_w), int(top + new_h)))
if patch[2] == patch[0] or patch[3] == patch[1]:
continue
overlaps = bbox_overlaps(patch.reshape(-1, 4), boxes.reshape(-1, 4)).reshape(-1)
if len(overlaps) > 0 and overlaps.min() < min_iou:
continue
if len(overlaps) > 0:
def is_center_of_bboxes_in_patch(boxes, patch):
center = (boxes[:, :2] + boxes[:, 2:]) / 2
mask = ((center[:, 0] > patch[0]) * (center[:, 1] > patch[1]) * (center[:, 0] < patch[2]) * (center[:, 1] < patch[3]))
return mask
mask = is_center_of_bboxes_in_patch(boxes, patch)
if False in mask:
continue
#TODO: use no center boxes
#if not mask.any():
# continue
boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:])
boxes[:, :2] = boxes[:, :2].clip(min=patch[:2])
boxes -= np.tile(patch[:2], 2)
target['boxes'] = torch.tensor(boxes)
img = np.asarray(img)[patch[1]:patch[3], patch[0]:patch[2]]
img = Image.fromarray(img)
width, height = img.size
target['orig_size'] = torch.tensor([height,width])
target['size'] = torch.tensor([height,width])
return img,target
class RandomContrast(object):
def __init__(self, lower=0.5, upper=1.5):
self.lower = lower
self.upper = upper
assert self.upper >= self.lower, "contrast upper must be >= lower."
assert self.lower >= 0, "contrast lower must be non-negative."
def __call__(self, image, target):
if rand.randint(2):
alpha = rand.uniform(self.lower, self.upper)
image *= alpha
return image, target
class RandomBrightness(object):
def __init__(self, delta=32):
assert delta >= 0.0
assert delta <= 255.0
self.delta = delta
def __call__(self, image, target):
if rand.randint(2):
delta = rand.uniform(-self.delta, self.delta)
image += delta
return image, target
class RandomSaturation(object):
def __init__(self, lower=0.5, upper=1.5):
self.lower = lower
self.upper = upper
assert self.upper >= self.lower, "contrast upper must be >= lower."
assert self.lower >= 0, "contrast lower must be non-negative."
def __call__(self, image, target):
if rand.randint(2):
image[:, :, 1] *= rand.uniform(self.lower, self.upper)
return image, target
class RandomHue(object): #
def __init__(self, delta=18.0):
assert delta >= 0.0 and delta <= 360.0
self.delta = delta
def __call__(self, image, target):
if rand.randint(2):
image[:, :, 0] += rand.uniform(-self.delta, self.delta)
image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
return image, target
class RandomLightingNoise(object):
def __init__(self):
self.perms = ((0, 1, 2), (0, 2, 1),
(1, 0, 2), (1, 2, 0),
(2, 0, 1), (2, 1, 0))
def __call__(self, image, target):
if rand.randint(2):
swap = self.perms[rand.randint(len(self.perms))]
shuffle = SwapChannels(swap) # shuffle channels
image = shuffle(image)
return image, target
class ConvertColor(object):
def __init__(self, current='BGR', transform='HSV'):
self.transform = transform
self.current = current
def __call__(self, image, target):
if self.current == 'BGR' and self.transform == 'HSV':
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
elif self.current == 'HSV' and self.transform == 'BGR':
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
else:
raise NotImplementedError
return image, target
class SwapChannels(object):
def __init__(self, swaps):
self.swaps = swaps
def __call__(self, image):
image = image[:, :, self.swaps]
return image
class PhotometricDistort(object):
def __init__(self):
self.pd = [
RandomContrast(),
ConvertColor(transform='HSV'),
RandomSaturation(),
RandomHue(),
ConvertColor(current='HSV', transform='BGR'),
RandomContrast()
]
self.rand_brightness = RandomBrightness()
self.rand_light_noise = RandomLightingNoise()
def __call__(self,clip,target):
imgs = []
for img in clip:
img = np.asarray(img).astype('float32')
img, target = self.rand_brightness(img, target)
if rand.randint(2):
distort = Compose(self.pd[:-1])
else:
distort = Compose(self.pd[1:])
img, target = distort(img, target)
img, target = self.rand_light_noise(img, target)
imgs.append(Image.fromarray(img.astype('uint8')))
return imgs, target
# NOTICE: if used for mask, need to change
class Expand(object):
def __init__(self, mean):
self.mean = mean
def __call__(self, clip, target):
if rand.randint(2):
return clip,target
imgs = []
masks = []
image = np.asarray(clip[0]).astype('float32')
height, width, depth = image.shape
ratio = rand.uniform(1, 4)
left = rand.uniform(0, width*ratio - width)
top = rand.uniform(0, height*ratio - height)
for i in range(len(clip)):
image = np.asarray(clip[i]).astype('float32')
expand_image = np.zeros((int(height*ratio), int(width*ratio), depth),dtype=image.dtype)
expand_image[:, :, :] = self.mean
expand_image[int(top):int(top + height),int(left):int(left + width)] = image
imgs.append(Image.fromarray(expand_image.astype('uint8')))
expand_mask = torch.zeros((int(height*ratio), int(width*ratio)),dtype=torch.uint8)
expand_mask[int(top):int(top + height),int(left):int(left + width)] = target['masks'][i]
masks.append(expand_mask)
boxes = target['boxes'].numpy()
boxes[:, :2] += (int(left), int(top))
boxes[:, 2:] += (int(left), int(top))
target['boxes'] = torch.tensor(boxes)
target['masks']=torch.stack(masks)
return imgs, target
class RandomHorizontalFlip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, img, target):
if random.random() < self.p:
# NOTE: caption for 'left' and 'right' should also change
caption = target['caption']
target['caption'] = caption.replace('left', '@').replace('right', 'left').replace('@', 'right')
return hflip(img, target)
return img, target
class RandomVerticalFlip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, img, target):
if random.random() < self.p:
return vflip(img, target)
return img, target
class RandomResize(object):
def __init__(self, sizes, max_size=None):
assert isinstance(sizes, (list, tuple))
self.sizes = sizes
self.max_size = max_size
def __call__(self, img, target=None):
size = random.choice(self.sizes)
return resize(img, target, size, self.max_size)
class RandomPad(object):
def __init__(self, max_pad):
self.max_pad = max_pad
def __call__(self, img, target):
pad_x = random.randint(0, self.max_pad)
pad_y = random.randint(0, self.max_pad)
return pad(img, target, (pad_x, pad_y))
class RandomSelect(object):
"""
Randomly selects between transforms1 and transforms2,
with probability p for transforms1 and (1 - p) for transforms2
"""
def __init__(self, transforms1, transforms2, p=0.5):
self.transforms1 = transforms1
self.transforms2 = transforms2
self.p = p
def __call__(self, img, target):
if random.random() < self.p:
return self.transforms1(img, target)
return self.transforms2(img, target)
class ToTensor(object):
def __call__(self, clip, target):
img = []
for im in clip:
img.append(F.to_tensor(im))
return img, target
class RandomErasing(object):
def __init__(self, *args, **kwargs):
self.eraser = T.RandomErasing(*args, **kwargs)
def __call__(self, img, target):
return self.eraser(img), target
class Normalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, clip, target=None):
image = []
for im in clip:
image.append(F.normalize(im, mean=self.mean, std=self.std))
if target is None:
return image, None
target = target.copy()
h, w = image[0].shape[-2:]
if "boxes" in target:
boxes = target["boxes"]
boxes = box_xyxy_to_cxcywh(boxes)
boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
target["boxes"] = boxes
return image, target
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, image, target):
for t in self.transforms:
image, target = t(image, target)
return image, target
def __repr__(self):
format_string = self.__class__.__name__ + "("
for t in self.transforms:
format_string += "\n"
format_string += " {0}".format(t)
format_string += "\n)"
return format_string