|
""" |
|
COCO dataset which returns image_id for evaluation. |
|
|
|
Mostly copy-paste from https://github.com/pytorch/vision/blob/13b35ff/references/detection/coco_utils.py |
|
""" |
|
from pathlib import Path |
|
|
|
import torch |
|
import torch.utils.data |
|
import torchvision |
|
from pycocotools import mask as coco_mask |
|
|
|
import datasets.transforms as T |
|
|
|
|
|
class CocoDetection(torchvision.datasets.CocoDetection): |
|
def __init__(self, img_folder, ann_file, transforms, return_masks): |
|
super(CocoDetection, self).__init__(img_folder, ann_file) |
|
self._transforms = transforms |
|
self.prepare = ConvertCocoPolysToMask(return_masks) |
|
|
|
def __getitem__(self, idx): |
|
img, target = super(CocoDetection, self).__getitem__(idx) |
|
image_id = self.ids[idx] |
|
target = {'image_id': image_id, 'annotations': target} |
|
|
|
img, target = self.prepare(img, target) |
|
if self._transforms is not None: |
|
img, target = self._transforms(img, target) |
|
return img, target |
|
|
|
|
|
def convert_coco_poly_to_mask(segmentations, height, width): |
|
masks = [] |
|
for polygons in segmentations: |
|
rles = coco_mask.frPyObjects(polygons, height, width) |
|
mask = coco_mask.decode(rles) |
|
if len(mask.shape) < 3: |
|
mask = mask[..., None] |
|
mask = torch.as_tensor(mask, dtype=torch.uint8) |
|
mask = mask.any(dim=2) |
|
masks.append(mask) |
|
if masks: |
|
masks = torch.stack(masks, dim=0) |
|
else: |
|
masks = torch.zeros((0, height, width), dtype=torch.uint8) |
|
return masks |
|
|
|
|
|
class ConvertCocoPolysToMask(object): |
|
def __init__(self, return_masks=False): |
|
self.return_masks = return_masks |
|
|
|
def __call__(self, image, target): |
|
w, h = image.size |
|
|
|
image_id = target["image_id"] |
|
image_id = torch.tensor([image_id]) |
|
|
|
anno = target["annotations"] |
|
|
|
anno = [obj for obj in anno if 'iscrowd' not in obj or obj['iscrowd'] == 0] |
|
|
|
boxes = [obj["bbox"] for obj in anno] |
|
|
|
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4) |
|
boxes[:, 2:] += boxes[:, :2] |
|
boxes[:, 0::2].clamp_(min=0, max=w) |
|
boxes[:, 1::2].clamp_(min=0, max=h) |
|
|
|
classes = [obj["category_id"] for obj in anno] |
|
classes = torch.tensor(classes, dtype=torch.int64) |
|
|
|
if self.return_masks: |
|
segmentations = [obj["segmentation"] for obj in anno] |
|
masks = convert_coco_poly_to_mask(segmentations, h, w) |
|
|
|
keypoints = None |
|
if anno and "keypoints" in anno[0]: |
|
keypoints = [obj["keypoints"] for obj in anno] |
|
keypoints = torch.as_tensor(keypoints, dtype=torch.float32) |
|
num_keypoints = keypoints.shape[0] |
|
if num_keypoints: |
|
keypoints = keypoints.view(num_keypoints, -1, 3) |
|
|
|
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) |
|
boxes = boxes[keep] |
|
classes = classes[keep] |
|
if self.return_masks: |
|
masks = masks[keep] |
|
if keypoints is not None: |
|
keypoints = keypoints[keep] |
|
|
|
target = {} |
|
target["boxes"] = boxes |
|
target["labels"] = classes |
|
if self.return_masks: |
|
target["masks"] = masks |
|
target["image_id"] = image_id |
|
if keypoints is not None: |
|
target["keypoints"] = keypoints |
|
|
|
|
|
area = torch.tensor([obj["area"] for obj in anno]) |
|
iscrowd = torch.tensor([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno]) |
|
target["area"] = area[keep] |
|
target["iscrowd"] = iscrowd[keep] |
|
|
|
target["orig_size"] = torch.as_tensor([int(h), int(w)]) |
|
target["size"] = torch.as_tensor([int(h), int(w)]) |
|
|
|
return image, target |
|
|
|
|
|
def make_coco_transforms(image_set): |
|
|
|
normalize = T.Compose([ |
|
T.ToTensor(), |
|
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
]) |
|
|
|
scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800] |
|
|
|
if image_set == 'train': |
|
return T.Compose([ |
|
T.RandomHorizontalFlip(), |
|
T.RandomSelect( |
|
T.RandomResize(scales, max_size=1333), |
|
T.Compose([ |
|
T.RandomResize([400, 500, 600]), |
|
T.RandomSizeCrop(384, 600), |
|
T.RandomResize(scales, max_size=1333), |
|
]) |
|
), |
|
normalize, |
|
]) |
|
|
|
if image_set == 'val': |
|
return T.Compose([ |
|
T.RandomResize([800], max_size=1333), |
|
normalize, |
|
]) |
|
|
|
raise ValueError(f'unknown {image_set}') |
|
|
|
|
|
def build(image_set, args): |
|
root = Path(args.coco_path) |
|
assert root.exists(), f'provided COCO path {root} does not exist' |
|
mode = 'instances' |
|
PATHS = { |
|
"train": (root / "train2017", root / "annotations" / f'{mode}_train2017.json'), |
|
"val": (root / "val2017", root / "annotations" / f'{mode}_val2017.json'), |
|
} |
|
img_folder, ann_file = PATHS[image_set] |
|
dataset = CocoDetection(img_folder, ann_file, transforms=make_coco_transforms(image_set), return_masks=args.masks) |
|
return dataset |
|
|