|
""" |
|
This file contains implementations for the precision@k and IoU (mean, overall) evaluation metrics. |
|
copy-paste from https://github.com/mttr2021/MTTR/blob/main/metrics.py |
|
""" |
|
import torch |
|
from tqdm import tqdm |
|
from pycocotools.coco import COCO |
|
from pycocotools.mask import decode |
|
import numpy as np |
|
|
|
from torchvision.ops.boxes import box_area |
|
|
|
def compute_bbox_iou(boxes1: torch.Tensor, boxes2: torch.Tensor): |
|
|
|
area1 = box_area(boxes1) |
|
area2 = box_area(boxes2) |
|
|
|
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) |
|
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) |
|
|
|
wh = (rb - lt).clamp(min=0) |
|
inter = wh[:, :, 0] * wh[:, :, 1] |
|
|
|
union = area1[:, None] + area2 - inter |
|
|
|
iou = (inter+1e-6) / (union+1e-6) |
|
return iou, inter, union |
|
|
|
def compute_mask_iou(outputs: torch.Tensor, labels: torch.Tensor, EPS=1e-6): |
|
outputs = outputs.int() |
|
intersection = (outputs & labels).float().sum((1, 2)) |
|
union = (outputs | labels).float().sum((1, 2)) |
|
iou = (intersection + EPS) / (union + EPS) |
|
return iou, intersection, union |
|
|
|
|
|
def calculate_precision_at_k_and_iou_metrics(coco_gt: COCO, coco_pred: COCO): |
|
print('evaluating mask precision@k & iou metrics...') |
|
counters_by_iou = {iou: 0 for iou in [0.5, 0.6, 0.7, 0.8, 0.9]} |
|
total_intersection_area = 0 |
|
total_union_area = 0 |
|
ious_list = [] |
|
for instance in tqdm(coco_gt.imgs.keys()): |
|
gt_annot = coco_gt.imgToAnns[instance][0] |
|
gt_mask = decode(gt_annot['segmentation']) |
|
pred_annots = coco_pred.imgToAnns[instance] |
|
pred_annot = sorted(pred_annots, key=lambda a: a['score'])[-1] |
|
pred_mask = decode(pred_annot['segmentation']) |
|
iou, intersection, union = compute_mask_iou(torch.tensor(pred_mask).unsqueeze(0), |
|
torch.tensor(gt_mask).unsqueeze(0)) |
|
iou, intersection, union = iou.item(), intersection.item(), union.item() |
|
for iou_threshold in counters_by_iou.keys(): |
|
if iou > iou_threshold: |
|
counters_by_iou[iou_threshold] += 1 |
|
total_intersection_area += intersection |
|
total_union_area += union |
|
ious_list.append(iou) |
|
num_samples = len(ious_list) |
|
precision_at_k = np.array(list(counters_by_iou.values())) / num_samples |
|
overall_iou = total_intersection_area / total_union_area |
|
mean_iou = np.mean(ious_list) |
|
return precision_at_k, overall_iou, mean_iou |
|
|
|
|
|
def calculate_bbox_precision_at_k_and_iou_metrics(coco_gt: COCO, coco_pred: COCO): |
|
print('evaluating bbox precision@k & iou metrics...') |
|
counters_by_iou = {iou: 0 for iou in [0.5, 0.6, 0.7, 0.8, 0.9]} |
|
total_intersection_area = 0 |
|
total_union_area = 0 |
|
ious_list = [] |
|
for instance in tqdm(coco_gt.imgs.keys()): |
|
gt_annot = coco_gt.imgToAnns[instance][0] |
|
gt_bbox = gt_annot['bbox'] |
|
gt_bbox = [ |
|
gt_bbox[0], |
|
gt_bbox[1], |
|
gt_bbox[2] + gt_bbox[0], |
|
gt_bbox[3] + gt_bbox[1], |
|
] |
|
pred_annots = coco_pred.imgToAnns[instance] |
|
pred_annot = sorted(pred_annots, key=lambda a: a['score'])[-1] |
|
pred_bbox = pred_annot['bbox'] |
|
iou, intersection, union = compute_bbox_iou(torch.tensor(pred_bbox).unsqueeze(0), |
|
torch.tensor(gt_bbox).unsqueeze(0)) |
|
iou, intersection, union = iou.item(), intersection.item(), union.item() |
|
for iou_threshold in counters_by_iou.keys(): |
|
if iou > iou_threshold: |
|
counters_by_iou[iou_threshold] += 1 |
|
total_intersection_area += intersection |
|
total_union_area += union |
|
ious_list.append(iou) |
|
num_samples = len(ious_list) |
|
precision_at_k = np.array(list(counters_by_iou.values())) / num_samples |
|
overall_iou = total_intersection_area / total_union_area |
|
mean_iou = np.mean(ious_list) |
|
return precision_at_k, overall_iou, mean_iou |
|
|