|
""" |
|
Modified from Video-Swin-Transformer https://github.com/SwinTransformer/Video-Swin-Transformer |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
import numpy as np |
|
from timm.models.layers import DropPath, trunc_normal_ |
|
from functools import reduce, lru_cache |
|
from operator import mul |
|
from einops import rearrange |
|
from typing import Dict, List |
|
|
|
from util.misc import NestedTensor |
|
from .position_encoding import build_position_encoding |
|
|
|
class Mlp(nn.Module): |
|
""" Multilayer perceptron.""" |
|
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
def window_partition(x, window_size): |
|
""" |
|
Args: |
|
x: (B, D, H, W, C) |
|
window_size (tuple[int]): window size |
|
|
|
Returns: |
|
windows: (B*num_windows, window_size*window_size, C) |
|
""" |
|
B, D, H, W, C = x.shape |
|
x = x.view(B, D // window_size[0], window_size[0], H // window_size[1], window_size[1], W // window_size[2], window_size[2], C) |
|
windows = x.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, reduce(mul, window_size), C) |
|
return windows |
|
|
|
|
|
def window_reverse(windows, window_size, B, D, H, W): |
|
""" |
|
Args: |
|
windows: (B*num_windows, window_size, window_size, C) |
|
window_size (tuple[int]): Window size |
|
H (int): Height of image |
|
W (int): Width of image |
|
|
|
Returns: |
|
x: (B, D, H, W, C) |
|
""" |
|
x = windows.view(B, D // window_size[0], H // window_size[1], W // window_size[2], window_size[0], window_size[1], window_size[2], -1) |
|
x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(B, D, H, W, -1) |
|
return x |
|
|
|
|
|
def get_window_size(x_size, window_size, shift_size=None): |
|
use_window_size = list(window_size) |
|
if shift_size is not None: |
|
use_shift_size = list(shift_size) |
|
for i in range(len(x_size)): |
|
if x_size[i] <= window_size[i]: |
|
use_window_size[i] = x_size[i] |
|
if shift_size is not None: |
|
use_shift_size[i] = 0 |
|
|
|
if shift_size is None: |
|
return tuple(use_window_size) |
|
else: |
|
return tuple(use_window_size), tuple(use_shift_size) |
|
|
|
|
|
class WindowAttention3D(nn.Module): |
|
""" Window based multi-head self attention (W-MSA) module with relative position bias. |
|
It supports both of shifted and non-shifted window. |
|
Args: |
|
dim (int): Number of input channels. |
|
window_size (tuple[int]): The temporal length, height and width of the window. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
""" |
|
|
|
def __init__(self, dim, window_size, num_heads, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.window_size = window_size |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
|
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1) * (2 * window_size[2] - 1), num_heads)) |
|
|
|
|
|
coords_d = torch.arange(self.window_size[0]) |
|
coords_h = torch.arange(self.window_size[1]) |
|
coords_w = torch.arange(self.window_size[2]) |
|
coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w)) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += self.window_size[0] - 1 |
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
relative_coords[:, :, 2] += self.window_size[2] - 1 |
|
|
|
relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1) |
|
relative_coords[:, :, 1] *= (2 * self.window_size[2] - 1) |
|
relative_position_index = relative_coords.sum(-1) |
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
trunc_normal_(self.relative_position_bias_table, std=.02) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, x, mask=None): |
|
""" Forward function. |
|
Args: |
|
x: input features with shape of (num_windows*B, N, C) |
|
mask: (0/-inf) mask with shape of (num_windows, N, N) or None |
|
""" |
|
B_, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
|
|
relative_position_bias = self.relative_position_bias_table[self.relative_position_index[:N, :N].reshape(-1)].reshape( |
|
N, N, -1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
if mask is not None: |
|
nW = mask.shape[0] |
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
attn = self.softmax(attn) |
|
else: |
|
attn = self.softmax(attn) |
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class SwinTransformerBlock3D(nn.Module): |
|
""" Swin Transformer Block. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads. |
|
window_size (tuple[int]): Window size. |
|
shift_size (tuple[int]): Shift size for SW-MSA. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__(self, dim, num_heads, window_size=(2,7,7), shift_size=(0,0,0), |
|
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., |
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_checkpoint=False): |
|
super().__init__() |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.window_size = window_size |
|
self.shift_size = shift_size |
|
self.mlp_ratio = mlp_ratio |
|
self.use_checkpoint=use_checkpoint |
|
|
|
assert 0 <= self.shift_size[0] < self.window_size[0], "shift_size must in 0-window_size" |
|
assert 0 <= self.shift_size[1] < self.window_size[1], "shift_size must in 0-window_size" |
|
assert 0 <= self.shift_size[2] < self.window_size[2], "shift_size must in 0-window_size" |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = WindowAttention3D( |
|
dim, window_size=self.window_size, num_heads=num_heads, |
|
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
def forward_part1(self, x, mask_matrix): |
|
B, D, H, W, C = x.shape |
|
window_size, shift_size = get_window_size((D, H, W), self.window_size, self.shift_size) |
|
|
|
x = self.norm1(x) |
|
|
|
pad_l = pad_t = pad_d0 = 0 |
|
pad_d1 = (window_size[0] - D % window_size[0]) % window_size[0] |
|
pad_b = (window_size[1] - H % window_size[1]) % window_size[1] |
|
pad_r = (window_size[2] - W % window_size[2]) % window_size[2] |
|
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1)) |
|
_, Dp, Hp, Wp, _ = x.shape |
|
|
|
if any(i > 0 for i in shift_size): |
|
shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3)) |
|
attn_mask = mask_matrix |
|
else: |
|
shifted_x = x |
|
attn_mask = None |
|
|
|
x_windows = window_partition(shifted_x, window_size) |
|
|
|
attn_windows = self.attn(x_windows, mask=attn_mask) |
|
|
|
attn_windows = attn_windows.view(-1, *(window_size+(C,))) |
|
shifted_x = window_reverse(attn_windows, window_size, B, Dp, Hp, Wp) |
|
|
|
if any(i > 0 for i in shift_size): |
|
x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3)) |
|
else: |
|
x = shifted_x |
|
|
|
if pad_d1 >0 or pad_r > 0 or pad_b > 0: |
|
x = x[:, :D, :H, :W, :].contiguous() |
|
return x |
|
|
|
def forward_part2(self, x): |
|
return self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
def forward(self, x, mask_matrix): |
|
""" Forward function. |
|
|
|
Args: |
|
x: Input feature, tensor size (B, D, H, W, C). |
|
mask_matrix: Attention mask for cyclic shift. |
|
""" |
|
|
|
shortcut = x |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(self.forward_part1, x, mask_matrix) |
|
else: |
|
x = self.forward_part1(x, mask_matrix) |
|
x = shortcut + self.drop_path(x) |
|
|
|
if self.use_checkpoint: |
|
x = x + checkpoint.checkpoint(self.forward_part2, x) |
|
else: |
|
x = x + self.forward_part2(x) |
|
|
|
return x |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
""" Patch Merging Layer |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
def __init__(self, dim, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.dim = dim |
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) |
|
self.norm = norm_layer(4 * dim) |
|
|
|
def forward(self, x): |
|
""" Forward function. |
|
|
|
Args: |
|
x: Input feature, tensor size (B, D, H, W, C). |
|
""" |
|
B, D, H, W, C = x.shape |
|
|
|
|
|
pad_input = (H % 2 == 1) or (W % 2 == 1) |
|
if pad_input: |
|
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) |
|
|
|
x0 = x[:, :, 0::2, 0::2, :] |
|
x1 = x[:, :, 1::2, 0::2, :] |
|
x2 = x[:, :, 0::2, 1::2, :] |
|
x3 = x[:, :, 1::2, 1::2, :] |
|
x = torch.cat([x0, x1, x2, x3], -1) |
|
|
|
x = self.norm(x) |
|
x = self.reduction(x) |
|
|
|
return x |
|
|
|
|
|
|
|
@lru_cache() |
|
def compute_mask(D, H, W, window_size, shift_size, device): |
|
img_mask = torch.zeros((1, D, H, W, 1), device=device) |
|
cnt = 0 |
|
for d in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0],None): |
|
for h in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1],None): |
|
for w in slice(-window_size[2]), slice(-window_size[2], -shift_size[2]), slice(-shift_size[2],None): |
|
img_mask[:, d, h, w, :] = cnt |
|
cnt += 1 |
|
mask_windows = window_partition(img_mask, window_size) |
|
mask_windows = mask_windows.squeeze(-1) |
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) |
|
return attn_mask |
|
|
|
|
|
class BasicLayer(nn.Module): |
|
""" A basic Swin Transformer layer for one stage. |
|
|
|
Args: |
|
dim (int): Number of feature channels |
|
depth (int): Depths of this stage. |
|
num_heads (int): Number of attention head. |
|
window_size (tuple[int]): Local window size. Default: (1,7,7). |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
depth, |
|
num_heads, |
|
window_size=(1,7,7), |
|
mlp_ratio=4., |
|
qkv_bias=False, |
|
qk_scale=None, |
|
drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
norm_layer=nn.LayerNorm, |
|
downsample=None, |
|
use_checkpoint=False): |
|
super().__init__() |
|
self.window_size = window_size |
|
self.shift_size = tuple(i // 2 for i in window_size) |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
SwinTransformerBlock3D( |
|
dim=dim, |
|
num_heads=num_heads, |
|
window_size=window_size, |
|
shift_size=(0,0,0) if (i % 2 == 0) else self.shift_size, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
norm_layer=norm_layer, |
|
use_checkpoint=use_checkpoint, |
|
) |
|
for i in range(depth)]) |
|
|
|
self.downsample = downsample |
|
if self.downsample is not None: |
|
self.downsample = downsample(dim=dim, norm_layer=norm_layer) |
|
|
|
def forward(self, x): |
|
""" Forward function. |
|
|
|
Args: |
|
x: Input feature, tensor size (B, C, D, H, W). |
|
""" |
|
|
|
B, C, D, H, W = x.shape |
|
window_size, shift_size = get_window_size((D,H,W), self.window_size, self.shift_size) |
|
x = rearrange(x, 'b c d h w -> b d h w c') |
|
Dp = int(np.ceil(D / window_size[0])) * window_size[0] |
|
Hp = int(np.ceil(H / window_size[1])) * window_size[1] |
|
Wp = int(np.ceil(W / window_size[2])) * window_size[2] |
|
attn_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, x.device) |
|
for blk in self.blocks: |
|
x = blk(x, attn_mask) |
|
x = x.view(B, D, H, W, -1) |
|
|
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
x = rearrange(x, 'b d h w c -> b c d h w') |
|
return x |
|
|
|
|
|
class PatchEmbed3D(nn.Module): |
|
""" Video to Patch Embedding. |
|
|
|
Args: |
|
patch_size (int): Patch token size. Default: (2,4,4). |
|
in_chans (int): Number of input video channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
def __init__(self, patch_size=(2,4,4), in_chans=3, embed_dim=96, norm_layer=None): |
|
super().__init__() |
|
self.patch_size = patch_size |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
|
|
_, _, D, H, W = x.size() |
|
if W % self.patch_size[2] != 0: |
|
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) |
|
if H % self.patch_size[1] != 0: |
|
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) |
|
if D % self.patch_size[0] != 0: |
|
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) |
|
|
|
x = self.proj(x) |
|
if self.norm is not None: |
|
D, Wh, Ww = x.size(2), x.size(3), x.size(4) |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) |
|
|
|
return x |
|
|
|
|
|
class SwinTransformer3D(nn.Module): |
|
""" Swin Transformer backbone. |
|
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - |
|
https://arxiv.org/pdf/2103.14030 |
|
|
|
Args: |
|
patch_size (int | tuple(int)): Patch size. Default: (4,4,4). |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
depths (tuple[int]): Depths of each Swin Transformer stage. |
|
num_heads (tuple[int]): Number of attention head of each stage. |
|
window_size (int): Window size. Default: 7. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: Truee |
|
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. |
|
drop_rate (float): Dropout rate. |
|
attn_drop_rate (float): Attention dropout rate. Default: 0. |
|
drop_path_rate (float): Stochastic depth rate. Default: 0.2. |
|
norm_layer: Normalization layer. Default: nn.LayerNorm. |
|
patch_norm (bool): If True, add normalization after patch embedding. Default: False. |
|
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). |
|
-1 means not freezing any parameters. |
|
""" |
|
|
|
def __init__(self, |
|
pretrained=None, |
|
pretrained2d=True, |
|
patch_size=(4,4,4), |
|
in_chans=3, |
|
embed_dim=96, |
|
depths=[2, 2, 6, 2], |
|
num_heads=[3, 6, 12, 24], |
|
window_size=(2,7,7), |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0.2, |
|
norm_layer=nn.LayerNorm, |
|
patch_norm=False, |
|
frozen_stages=-1, |
|
use_checkpoint=False): |
|
super().__init__() |
|
|
|
self.pretrained = pretrained |
|
self.pretrained2d = pretrained2d |
|
self.num_layers = len(depths) |
|
self.embed_dim = embed_dim |
|
self.patch_norm = patch_norm |
|
self.frozen_stages = frozen_stages |
|
self.window_size = window_size |
|
self.patch_size = patch_size |
|
|
|
|
|
self.patch_embed = PatchEmbed3D( |
|
patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
layer = BasicLayer( |
|
dim=int(embed_dim * 2**i_layer), |
|
depth=depths[i_layer], |
|
num_heads=num_heads[i_layer], |
|
window_size=window_size, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
norm_layer=norm_layer, |
|
downsample=PatchMerging if i_layer<self.num_layers-1 else None, |
|
use_checkpoint=use_checkpoint) |
|
self.layers.append(layer) |
|
|
|
self.num_features = int(embed_dim * 2**(self.num_layers-1)) |
|
|
|
|
|
self.norm = norm_layer(self.num_features) |
|
|
|
self._freeze_stages() |
|
|
|
def _freeze_stages(self): |
|
if self.frozen_stages >= 0: |
|
self.patch_embed.eval() |
|
for param in self.patch_embed.parameters(): |
|
param.requires_grad = False |
|
|
|
if self.frozen_stages >= 1: |
|
self.pos_drop.eval() |
|
for i in range(0, self.frozen_stages): |
|
m = self.layers[i] |
|
m.eval() |
|
for param in m.parameters(): |
|
param.requires_grad = False |
|
|
|
def inflate_weights(self, logger): |
|
"""Inflate the swin2d parameters to swin3d. |
|
|
|
The differences between swin3d and swin2d mainly lie in an extra |
|
axis. To utilize the pretrained parameters in 2d model, |
|
the weight of swin2d models should be inflated to fit in the shapes of |
|
the 3d counterpart. |
|
|
|
Args: |
|
logger (logging.Logger): The logger used to print |
|
debugging infomation. |
|
""" |
|
checkpoint = torch.load(self.pretrained, map_location='cpu') |
|
state_dict = checkpoint['model'] |
|
|
|
|
|
relative_position_index_keys = [k for k in state_dict.keys() if "relative_position_index" in k] |
|
for k in relative_position_index_keys: |
|
del state_dict[k] |
|
|
|
|
|
attn_mask_keys = [k for k in state_dict.keys() if "attn_mask" in k] |
|
for k in attn_mask_keys: |
|
del state_dict[k] |
|
|
|
state_dict['patch_embed.proj.weight'] = state_dict['patch_embed.proj.weight'].unsqueeze(2).repeat(1,1,self.patch_size[0],1,1) / self.patch_size[0] |
|
|
|
|
|
relative_position_bias_table_keys = [k for k in state_dict.keys() if "relative_position_bias_table" in k] |
|
for k in relative_position_bias_table_keys: |
|
relative_position_bias_table_pretrained = state_dict[k] |
|
relative_position_bias_table_current = self.state_dict()[k] |
|
L1, nH1 = relative_position_bias_table_pretrained.size() |
|
L2, nH2 = relative_position_bias_table_current.size() |
|
L2 = (2*self.window_size[1]-1) * (2*self.window_size[2]-1) |
|
wd = self.window_size[0] |
|
if nH1 != nH2: |
|
logger.warning(f"Error in loading {k}, passing") |
|
else: |
|
if L1 != L2: |
|
S1 = int(L1 ** 0.5) |
|
relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate( |
|
relative_position_bias_table_pretrained.permute(1, 0).view(1, nH1, S1, S1), size=(2*self.window_size[1]-1, 2*self.window_size[2]-1), |
|
mode='bicubic') |
|
relative_position_bias_table_pretrained = relative_position_bias_table_pretrained_resized.view(nH2, L2).permute(1, 0) |
|
state_dict[k] = relative_position_bias_table_pretrained.repeat(2*wd-1,1) |
|
|
|
msg = self.load_state_dict(state_dict, strict=False) |
|
logger.info(msg) |
|
logger.info(f"=> loaded successfully '{self.pretrained}'") |
|
del checkpoint |
|
torch.cuda.empty_cache() |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
x = self.patch_embed(x) |
|
|
|
x = self.pos_drop(x) |
|
|
|
for layer in self.layers: |
|
x = layer(x.contiguous()) |
|
|
|
x = rearrange(x, 'n c d h w -> n d h w c') |
|
x = self.norm(x) |
|
x = rearrange(x, 'n d h w c -> n c d h w') |
|
|
|
return x |
|
|
|
def train(self, mode=True): |
|
"""Convert the model into training mode while keep layers freezed.""" |
|
super(SwinTransformer3D, self).train(mode) |
|
self._freeze_stages() |
|
|
|
|
|
|
|
class VideoSwinTransformerBackbone(nn.Module): |
|
""" |
|
A wrapper which allows using Video-Swin Transformer as a temporal encoder for MTTR. |
|
Check out video-swin's original paper at: https://arxiv.org/abs/2106.13230 for more info about this architecture. |
|
Only the 'tiny' version of video swin was tested and is currently supported in our project. |
|
Additionally, we slightly modify video-swin to make it output per-frame embeddings as required by MTTR (check our |
|
paper's supplementary for more details), and completely discard of its 4th block. |
|
""" |
|
def __init__(self, backbone_pretrained: bool, backbone_pretrained_path, train_backbone: bool, **kwargs): |
|
super(VideoSwinTransformerBackbone, self).__init__() |
|
|
|
|
|
swin_backbone = SwinTransformer3D(**kwargs) |
|
if backbone_pretrained and isinstance(backbone_pretrained_path, str): |
|
state_dict = torch.load(backbone_pretrained_path)['state_dict'] |
|
|
|
state_dict = {k[9:]: v for k, v in state_dict.items() if 'backbone.' in k} |
|
|
|
|
|
patch_embed_weight = state_dict['patch_embed.proj.weight'] |
|
patch_embed_weight = patch_embed_weight.sum(dim=2, keepdims=True) |
|
state_dict['patch_embed.proj.weight'] = patch_embed_weight |
|
print(f'load from {backbone_pretrained_path}.') |
|
swin_backbone.load_state_dict(state_dict) |
|
|
|
self.patch_embed = swin_backbone.patch_embed |
|
self.pos_drop = swin_backbone.pos_drop |
|
self.layers = swin_backbone.layers |
|
self.downsamples = nn.ModuleList() |
|
for layer in self.layers: |
|
self.downsamples.append(layer.downsample) |
|
layer.downsample = None |
|
self.downsamples[-1] = None |
|
|
|
self.layer_output_channels = [swin_backbone.embed_dim * 2 ** i for i in range(len(self.layers))] |
|
self.train_backbone = train_backbone |
|
if not train_backbone: |
|
for parameter in self.parameters(): |
|
parameter.requires_grad_(False) |
|
|
|
def forward(self, samples: torch.Tensor, num_frames): |
|
|
|
|
|
n, c, h, w = samples.shape |
|
samples = rearrange(samples, '(b t) c h w -> b c t h w', b=n//num_frames, t=num_frames) |
|
vid_embeds = self.patch_embed(samples) |
|
vid_embeds = self.pos_drop(vid_embeds) |
|
|
|
out = {} |
|
for idx, (layer, downsample) in enumerate(zip(self.layers, self.downsamples)): |
|
vid_embeds = layer(vid_embeds.contiguous()) |
|
out[str(idx)] = vid_embeds |
|
if downsample: |
|
vid_embeds = rearrange(vid_embeds, 'b c t h w -> b t h w c') |
|
vid_embeds = downsample(vid_embeds) |
|
vid_embeds = rearrange(vid_embeds, 'b t h w c -> b c t h w') |
|
|
|
for idx, o in out.items(): |
|
out[idx] = rearrange(o, 'b c t h w -> (b t) c h w') |
|
return out |
|
|
|
|
|
|
|
class BackboneBase(nn.Module): |
|
def __init__(self, backbone: nn.Module, strides=[4, 8, 16, 32], num_channels=[96, 192, 384, 768]): |
|
super().__init__() |
|
self.strides = strides |
|
self.num_channels = num_channels |
|
self.body = backbone |
|
|
|
def forward(self, tensor_list: NestedTensor, num_frames: int): |
|
xs = self.body(tensor_list.tensors, num_frames) |
|
out: Dict[str, NestedTensor] = {} |
|
for name, x in xs.items(): |
|
m = tensor_list.mask |
|
assert m is not None |
|
mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0] |
|
out[name] = NestedTensor(x, mask) |
|
return out |
|
|
|
class Backbone(BackboneBase): |
|
"""ResNet backbone with frozen BatchNorm.""" |
|
def __init__(self, name: str, |
|
checkpoint: bool = False, |
|
pretrained: str = None): |
|
assert name in ['video_swin_t_p4w7', 'video_swin_s_p4w7', 'video_swin_b_p4w7'] |
|
cfgs = configs[name] |
|
cfgs.update({'use_checkpoint': checkpoint}) |
|
out_indices = (0, 1, 2, 3) |
|
strides = [int(2**(i+2)) for i in out_indices] |
|
num_channels = [int(cfgs['embed_dim'] * 2**i) for i in out_indices] |
|
backbone = VideoSwinTransformerBackbone(True, pretrained, True, **cfgs) |
|
super().__init__(backbone, strides, num_channels) |
|
|
|
|
|
configs = { |
|
'video_swin_t_p4w7': |
|
dict(patch_size=(1,4,4), |
|
embed_dim=96, |
|
depths=[2, 2, 6, 2], |
|
num_heads=[3, 6, 12, 24], |
|
window_size=(8,7,7), |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0.2, |
|
patch_norm=True, |
|
use_checkpoint=False |
|
), |
|
'video_swin_s_p4w7': |
|
dict(patch_size=(1,4,4), |
|
embed_dim=96, |
|
depths=[2, 2, 18, 2], |
|
num_heads=[3, 6, 12, 24], |
|
window_size=(8,7,7), |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0.2, |
|
patch_norm=True, |
|
use_checkpoint=False |
|
), |
|
'video_swin_b_p4w7': |
|
dict(patch_size=(1,4,4), |
|
embed_dim=128, |
|
depths=[2, 2, 18, 2], |
|
num_heads=[4, 8, 16, 32], |
|
window_size=(8,7,7), |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0.2, |
|
patch_norm=True, |
|
use_checkpoint=False |
|
) |
|
} |
|
|
|
class Joiner(nn.Sequential): |
|
def __init__(self, backbone, position_embedding): |
|
super().__init__(backbone, position_embedding) |
|
self.strides = backbone.strides |
|
self.num_channels = backbone.num_channels |
|
|
|
def forward(self, tensor_list: NestedTensor): |
|
_, t = tensor_list.tensors.shape[:2] |
|
tensor_list.tensors = rearrange(tensor_list.tensors, 'b t c h w -> (b t) c h w') |
|
tensor_list.mask = rearrange(tensor_list.mask, 'b t h w -> (b t) h w') |
|
|
|
xs = self[0](tensor_list, num_frames=t) |
|
out: List[NestedTensor] = [] |
|
pos = [] |
|
for name, x in sorted(xs.items()): |
|
out.append(x) |
|
|
|
for x in out: |
|
pos.append(self[1](x).to(x.tensors.dtype)) |
|
return out, pos |
|
|
|
|
|
def build_video_swin_backbone(args): |
|
position_embedding = build_position_encoding(args) |
|
backbone = Backbone(args.backbone, args.use_checkpoint, args.backbone_pretrained) |
|
model = Joiner(backbone, position_embedding) |
|
return model |
|
|
|
|
|
if __name__ == '__main__': |
|
cfgs = configs['video_swin_t_p4w7'] |
|
model = VideoSwinTransformerBackbone(True, 'video_swin_pretrained/swin_tiny_patch244_window877_kinetics400_1k.pth', True, **cfgs).cuda() |
|
inputs = torch.randn(10, 3,384,224).cuda() |
|
import ipdb; ipdb.set_trace() |
|
|
|
|
|
|
|
|
|
|
|
out = model(inputs, num_frames=5) |