VRIS_vip / RIS-DMMI /data /dataset_zom.py
dianecy's picture
Upload folder using huggingface_hub
0b32e3c verified
raw
history blame
8.29 kB
import os
import torch.utils.data as data
import torch
import numpy as np
from PIL import Image
import pdb
import copy
from random import choice
from bert.tokenization_bert import BertTokenizer
from textblob import TextBlob
from refer.refer import REFER
import copy
import random
import torch
from collections import defaultdict
import torch
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from args import get_parser
import random
# Dataset configuration initialization
parser = get_parser()
args = parser.parse_args()
class Referzom_Dataset(data.Dataset):
def __init__(self,
args,
image_transforms=None,
target_transforms=None,
split='train',
eval_mode=False):
self.classes = []
self.image_transforms = image_transforms
self.target_transform = target_transforms
self.split = split
self.refer = REFER(args.refer_data_root, args.dataset, args.splitBy)
self.dataset_type = args.dataset
self.max_tokens = 20
ref_ids = self.refer.getRefIds(split=self.split)
self.img_ids = self.refer.getImgIds()
all_imgs = self.refer.Imgs
self.imgs = list(all_imgs[i] for i in self.img_ids)
self.ref_ids = ref_ids
self.input_ids = []
self.input_ids_masked = []
self.attention_masks = []
self.tokenizer = BertTokenizer.from_pretrained(args.bert_tokenizer)
self.eval_mode = eval_mode
self.zero_sent_id_list = []
self.one_sent_id_list = []
self.all_sent_id_list = []
self.sent_2_refid = {}
for r in ref_ids:
ref = self.refer.loadRefs(r)
source_type = ref[0]['source']
for sent_dict in ref[0]['sentences']:
sent_id = sent_dict['sent_id']
self.sent_2_refid[sent_id] = r
self.all_sent_id_list.append(sent_id)
if source_type=='zero':
self.zero_sent_id_list.append(sent_id)
else:
self.one_sent_id_list.append(sent_id)
for r in ref_ids:
ref = self.refer.Refs[r]
sentences_for_ref = []
sentences_for_ref_masked = []
attentions_for_ref = []
for i, el in enumerate(ref['sentences']):
sentence_raw = el['raw']
attention_mask = [0] * self.max_tokens
padded_input_ids = [0] * self.max_tokens
padded_input_ids_masked = [0] * self.max_tokens
blob = TextBlob(sentence_raw.lower())
chara_list = blob.tags
mask_ops = []
mask_ops1 = []
for word_i, (word_now, chara) in enumerate(chara_list):
if (chara == 'NN' or chara == 'NNS') and word_i < 19 and word_now.lower():
mask_ops.append(word_i)
mask_ops1.append(word_now)
mask_ops2 = self.get_adjacent_word(mask_ops)
input_ids = self.tokenizer.encode(text=sentence_raw, add_special_tokens=True)
# truncation of tokens
input_ids = input_ids[:self.max_tokens]
padded_input_ids[:len(input_ids)] = input_ids
attention_mask[:len(input_ids)] = [1]*len(input_ids)
if len(mask_ops) == 0:
attention_remask = attention_mask
input_ids_masked = input_ids
else:
could_mask = choice(mask_ops2)
input_ids_masked = copy.deepcopy(input_ids)
for i in could_mask:
input_ids_masked[i + 1] = 0
padded_input_ids_masked[:len(input_ids_masked)] = input_ids_masked
sentences_for_ref.append(torch.tensor(padded_input_ids).unsqueeze(0))
sentences_for_ref_masked.append(torch.tensor(padded_input_ids_masked).unsqueeze(0))
attentions_for_ref.append(torch.tensor(attention_mask).unsqueeze(0))
self.input_ids.extend(sentences_for_ref)
self.input_ids_masked.extend(sentences_for_ref_masked)
self.attention_masks.extend(attentions_for_ref)
def get_classes(self):
return self.classes
def __len__(self):
return len(self.all_sent_id_list)
def get_adjacent_word(self, mask_list):
output_mask_list = []
length = len(mask_list)
i = 0
while i < length:
begin_pos = i
while i+1 < length and mask_list[i+1] == mask_list[i] + 1:
i += 1
end_pos = i+1
output_mask_list.append(mask_list[begin_pos:end_pos])
i = end_pos
return output_mask_list
def __getitem__(self, index):
sent_id = self.all_sent_id_list[index]
this_ref_id = self.sent_2_refid[sent_id]
this_img_id = self.refer.getImgIds(this_ref_id)
this_img = self.refer.Imgs[this_img_id[0]]
img = Image.open(os.path.join(self.refer.IMAGE_DIR, this_img['file_name'])).convert("RGB")
ref = self.refer.loadRefs(this_ref_id)
if self.dataset_type == 'ref-zom':
source_type = ref[0]['source']
else:
source_type = 'not_zero'
ref_mask = np.array(self.refer.getMask(ref[0])['mask'])
annot = np.zeros(ref_mask.shape)
annot[ref_mask == 1] = 1
annot = Image.fromarray(annot.astype(np.uint8), mode="P")
if self.image_transforms is not None:
img, target = self.image_transforms(img, annot)
if self.eval_mode:
embedding = []
embedding_masked = []
att = []
for s in range(len(self.input_ids[index])):
e = self.input_ids[index][s]
# e1 = self.input_ids_masked[index][s]
a = self.attention_masks[index][s]
embedding.append(e.unsqueeze(-1))
embedding_masked.append(e.unsqueeze(-1))
att.append(a.unsqueeze(-1))
tensor_embeddings = torch.cat(embedding, dim=-1)
tensor_embeddings_masked = torch.cat(embedding_masked, dim=-1)
attention_mask = torch.cat(att, dim=-1)
else:
choice_sent = np.random.choice(len(self.input_ids[index]))
tensor_embeddings = self.input_ids[index][choice_sent]
tensor_embeddings_masked = self.input_ids_masked[index][choice_sent]
attention_mask = self.attention_masks[index][choice_sent]
return img, target, source_type, tensor_embeddings, tensor_embeddings_masked, attention_mask
class Refzom_DistributedSampler(DistributedSampler):
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True):
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
self.one_id_list = dataset.one_sent_id_list
self.zero_id_list = dataset.zero_sent_id_list
self.sent_ids_list = dataset.all_sent_id_list
if self.shuffle==True:
random.shuffle(self.one_id_list)
random.shuffle(self.zero_id_list)
self.sent_id = self.insert_evenly(self.zero_id_list,self.one_id_list)
self.indices = self.get_positions(self.sent_ids_list, self.sent_id)
def get_positions(self, list_a, list_b):
position_dict = {value: index for index, value in enumerate(list_a)}
positions = [position_dict[item] for item in list_b]
return positions
def insert_evenly(self, list_a, list_b):
len_a = len(list_a)
len_b = len(list_b)
block_size = len_b // len_a
result = []
for i in range(len_a):
start = i * block_size
end = (i + 1) * block_size
result.extend(list_b[start:end])
result.append(list_a[i])
remaining = list_b[(len_a * block_size):]
result.extend(remaining)
return result
def __iter__(self):
indices_per_process = self.indices[self.rank::self.num_replicas]
return iter(indices_per_process)