VRIS_vip / RIS-DMMI /data /dataset_rev.py
dianecy's picture
Upload folder using huggingface_hub
0b32e3c verified
raw
history blame
11.9 kB
import os
import sys
import torch.utils.data as data
import torch
import numpy as np
from PIL import Image
import pdb
import copy
import random
from random import choice
from bert.tokenization_bert import BertTokenizer
from textblob import TextBlob
import random
import h5py
from refer.refer import REFER
import json
from args import get_parser
# Dataset configuration initialization
parser = get_parser()
args = parser.parse_args()
class ReferDataset_HP(data.Dataset):
def __init__(self,
args,
image_transforms=None,
target_transforms=None,
split='train',
eval_mode=False):
self.classes = []
self.image_transforms = image_transforms
self.target_transform = target_transforms
self.split = split
self.refer = REFER(args.refer_data_root, args.dataset, args.splitBy)
self.dataset_type = args.dataset
self.max_tokens = 20
ref_ids = self.refer.getRefIds(split=self.split)
self.img_ids = self.refer.getImgIds()
all_imgs = self.refer.Imgs
self.imgs = list(all_imgs[i] for i in self.img_ids)
self.ref_ids = ref_ids
self.input_ids = []
self.input_ids_masked = []
self.attention_masks = []
self.tokenizer = BertTokenizer.from_pretrained(args.bert_tokenizer)
# for metric learning #####################
# self.ROOT = '/data2/dataset/RefCOCO/VRIS'
self.ROOT = '/data2/projects/seunghoon/VerbRIS/VerbCentric_CY/datasets/VRIS'
self.metric_learning = args.metric_learning
self.exclude_multiobj = args.exclude_multiobj
self.metric_mode = args.metric_mode
self.exclude_position = False
self.hp_selection = args.hp_selection
if self.metric_learning and eval_mode == False:
self.hardneg_prob = args.hn_prob
self.multi_obj_ref_ids = self._load_multi_obj_ref_ids()
self.hardpos_meta, self.hardneg_meta = self._load_metadata()
else:
self.hardneg_prob = 0.0
self.multi_obj_ref_ids = None
self.hardpos_meta, self.hardneg_meta = None, None
#############################################
self.eval_mode = eval_mode
for r in ref_ids:
ref = self.refer.Refs[r]
sentences_for_ref = []
sentences_for_ref_masked = []
attentions_for_ref = []
for i, (el, sent_id) in enumerate(zip(ref['sentences'], ref['sent_ids'])):
sentence_raw = el['raw']
attention_mask = [0] * self.max_tokens
padded_input_ids = [0] * self.max_tokens
padded_input_ids_masked = [0] * self.max_tokens
blob = TextBlob(sentence_raw.lower())
chara_list = blob.tags
mask_ops = []
mask_ops1 = []
for word_i, (word_now, chara) in enumerate(chara_list):
if (chara == 'NN' or chara == 'NNS') and word_i < 19 and word_now.lower():
mask_ops.append(word_i)
mask_ops1.append(word_now)
mask_ops2 = self.get_adjacent_word(mask_ops)
input_ids = self.tokenizer.encode(text=sentence_raw, add_special_tokens=True)
# truncation of tokens
input_ids = input_ids[:self.max_tokens]
padded_input_ids[:len(input_ids)] = input_ids
attention_mask[:len(input_ids)] = [1]*len(input_ids)
if len(mask_ops) == 0:
attention_remask = attention_mask
input_ids_masked = input_ids
else:
could_mask = choice(mask_ops2)
input_ids_masked = copy.deepcopy(input_ids)
for i in could_mask:
input_ids_masked[i + 1] = 0
padded_input_ids_masked[:len(input_ids_masked)] = input_ids_masked
sentences_for_ref.append(torch.tensor(padded_input_ids).unsqueeze(0))
sentences_for_ref_masked.append(torch.tensor(padded_input_ids_masked).unsqueeze(0))
attentions_for_ref.append(torch.tensor(attention_mask).unsqueeze(0))
self.input_ids.append(sentences_for_ref)
self.input_ids_masked.append(sentences_for_ref_masked)
self.attention_masks.append(attentions_for_ref)
def get_classes(self):
return self.classes
def __len__(self):
return len(self.ref_ids)
def get_adjacent_word(self, mask_list):
output_mask_list = []
length = len(mask_list)
i = 0
while i < length:
begin_pos = i
while i+1 < length and mask_list[i+1] == mask_list[i] + 1:
i += 1
end_pos = i+1
output_mask_list.append(mask_list[begin_pos:end_pos])
i = end_pos
return output_mask_list
# for metric learning #####################
###########################################
def _tokenize(self, sentence):
attention_mask = [0] * self.max_tokens
padded_input_ids = [0] * self.max_tokens
input_ids = self.tokenizer.encode(text=sentence, add_special_tokens=True)
# truncation of tokens
input_ids = input_ids[:self.max_tokens]
padded_input_ids[:len(input_ids)] = input_ids
attention_mask[:len(input_ids)] = [1]*len(input_ids)
# match shape as (1, max_tokens)
return torch.tensor(padded_input_ids).unsqueeze(0), torch.tensor(attention_mask).unsqueeze(0)
def _load_multi_obj_ref_ids(self):
# Load multi-object reference IDs based on configurations
if not self.exclude_multiobj and not self.exclude_position :
return None
elif self.exclude_position:
multiobj_path = os.path.join(self.ROOT, 'multiobj_ov2_nopos.txt')
elif self.exclude_multiobj :
multiobj_path = os.path.join(self.ROOT, 'multiobj_ov3.txt')
with open(multiobj_path, 'r') as f:
return [int(line.strip()) for line in f.readlines()]
def _load_metadata(self):
# Load metadata for hard positive verb phrases, hard negative queries
if 'refined' in self.metric_mode :
hardpos_path = os.path.join(self.ROOT, 'hardpos_verdict_gref_v4.json')
else :
hardpos_path = os.path.join(self.ROOT, 'hardpos_verbphrase_0906upd.json')
# do not use hardneg_path
hardneg_path = os.path.join(self.ROOT, 'hardneg_verb.json')
with open(hardpos_path, 'r', encoding='utf-8') as f:
hardpos_json = json.load(f)
if "hardpos_only" in self.metric_mode :
hardneg_json = None
else :
with open(hardneg_path, 'r', encoding='utf-8') as q:
hardneg_json = json.load(q)
return hardpos_json, hardneg_json
def _get_hardpos_verb(self, ref, seg_id, sent_idx) :
if seg_id in self.multi_obj_ref_ids:
return ''
# Extract metadata for hard positives if present
hardpos_dict = self.hardpos_meta.get(str(seg_id), {})
if self.hp_selection == 'strict' :
sent_id_list = list(hardpos_dict.keys())
cur_hardpos = hardpos_dict.get(sent_id_list[sent_idx], {}).get('phrases', [])
return cur_hardpos
else :
pos_sents = []
for sid in hardpos_dict :
cur_hp = hardpos_dict[sid]['phrases']
if cur_hp : pos_sents.append(cur_hp)
cur_hardpos = random.choice(list(pos_sents))
return cur_hardpos
return ''
# def _get_hardpos_verb(self, ref, seg_id, sent_idx) :
# if seg_id in self.multi_obj_ref_ids:
# return ''
# # Extract metadata for hard positives if present
# hardpos_dict = self.hardpos_meta.get(str(seg_id), {})
# if self.hp_selection == 'strict' :
# sent_id_list = list(hardpos_dict.keys())
# cur_hardpos = hardpos_dict.get(sent_id_list[sent_idx], {}).get('phrases', [])
# else :
# cur_hardpos = list(itertools.chain.from_iterable(hardpos_dict[sid]['phrases'] for sid in hardpos_dict))
# if cur_hardpos:
# # Assign a hard positive verb phrase if available
# raw_verb = random.choice(cur_hardpos)
# return raw_verb
# return ''
###########################################
###########################################
def __getitem__(self, index):
this_ref_id = self.ref_ids[index]
this_img_id = self.refer.getImgIds(this_ref_id)
this_img = self.refer.Imgs[this_img_id[0]]
img = Image.open(os.path.join('/data2/dataset/COCO2014/trainval2014/', this_img['file_name'])).convert("RGB")
ref = self.refer.loadRefs(this_ref_id)
if self.dataset_type == 'ref_zom':
source_type = ref[0]['source']
else:
source_type = 'one'
ref_mask = np.array(self.refer.getMask(ref[0])['mask'])
annot = np.zeros(ref_mask.shape)
annot[ref_mask == 1] = 1
annot = Image.fromarray(annot.astype(np.uint8), mode="P")
if self.image_transforms is not None:
img, target = self.image_transforms(img, annot)
if self.eval_mode:
embedding = []
embedding_masked = []
att = []
for s in range(len(self.input_ids[index])):
e = self.input_ids[index][s]
a = self.attention_masks[index][s]
embedding.append(e.unsqueeze(-1))
embedding_masked.append(e.unsqueeze(-1))
att.append(a.unsqueeze(-1))
tensor_embeddings = torch.cat(embedding, dim=-1)
tensor_embeddings_masked = torch.cat(embedding_masked, dim=-1)
attention_mask = torch.cat(att, dim=-1)
return img, target, source_type, tensor_embeddings, tensor_embeddings_masked, attention_mask
else:
# train phase
choice_sent = np.random.choice(len(self.input_ids[index]))
tensor_embeddings = self.input_ids[index][choice_sent]
tensor_embeddings_masked = self.input_ids_masked[index][choice_sent]
attention_mask = self.attention_masks[index][choice_sent]
if self.metric_learning :
pos_sent = torch.zeros_like(tensor_embeddings)
pos_attn_mask = torch.zeros_like(attention_mask)
## Only the case with hardpos_ in metric_mode
if 'hardpos_' in self.metric_mode or self.hardneg_prob == 0.0:
pos_type = 'zero'
if 'refined' in self.metric_mode :
pos_sent_picked = self._get_hardpos_verb(ref, this_ref_id, choice_sent)
else :
pos_sents = self.hardpos_meta[str(this_ref_id)].values()
# drop elements with none
pos_sents = [s for s in pos_sents if s is not None]
pos_sent_picked = random.choice(list(pos_sents))
if pos_sent_picked:
pos_type = 'hardpos'
pos_sent, pos_attn_mask = self._tokenize(pos_sent_picked)
return img, target, source_type, tensor_embeddings, tensor_embeddings_masked, attention_mask, pos_sent, pos_attn_mask, pos_type
return img, target, source_type, tensor_embeddings, tensor_embeddings_masked, attention_mask