|
''' |
|
Inference code for ReferFormer, on Ref-Youtube-VOS |
|
Modified from DETR (https://github.com/facebookresearch/detr) |
|
Ref-Davis17 does not support visualize |
|
''' |
|
import argparse |
|
import json |
|
import random |
|
import time |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
import util.misc as utils |
|
from models import build_model |
|
import torchvision.transforms as T |
|
import matplotlib.pyplot as plt |
|
import os |
|
import cv2 |
|
from PIL import Image, ImageDraw |
|
import math |
|
import torch.nn.functional as F |
|
import json |
|
|
|
|
|
import opts |
|
from tqdm import tqdm |
|
|
|
import multiprocessing as mp |
|
import threading |
|
|
|
from tools.colormap import colormap |
|
|
|
|
|
|
|
color_list = colormap() |
|
color_list = color_list.astype('uint8').tolist() |
|
|
|
|
|
transform = T.Compose([ |
|
T.Resize(360), |
|
T.ToTensor(), |
|
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
]) |
|
|
|
|
|
def main(args): |
|
args.dataset_file = "davis" |
|
args.masks = True |
|
args.batch_size == 1 |
|
print("Inference only supports for batch size = 1") |
|
print(args) |
|
|
|
|
|
seed = args.seed + utils.get_rank() |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
random.seed(seed) |
|
|
|
split = args.split |
|
|
|
output_dir = args.output_dir |
|
save_path_prefix = os.path.join(output_dir, split) |
|
if not os.path.exists(save_path_prefix): |
|
os.makedirs(save_path_prefix) |
|
|
|
save_visualize_path_prefix = os.path.join(output_dir, split + '_images') |
|
if args.visualize: |
|
if not os.path.exists(save_visualize_path_prefix): |
|
os.makedirs(save_visualize_path_prefix) |
|
|
|
|
|
root = Path(args.davis_path) |
|
img_folder = os.path.join(root, split, "JPEGImages") |
|
meta_file = os.path.join(root, "meta_expressions", split, "meta_expressions.json") |
|
with open(meta_file, "r") as f: |
|
data = json.load(f)["videos"] |
|
video_list = list(data.keys()) |
|
|
|
|
|
thread_num = args.ngpu |
|
global result_dict |
|
result_dict = mp.Manager().dict() |
|
|
|
processes = [] |
|
lock = threading.Lock() |
|
|
|
video_num = len(video_list) |
|
per_thread_video_num = math.ceil(float(video_num) / float(thread_num)) |
|
|
|
start_time = time.time() |
|
print('Start inference') |
|
for i in range(thread_num): |
|
if i == thread_num - 1: |
|
sub_video_list = video_list[i * per_thread_video_num:] |
|
else: |
|
sub_video_list = video_list[i * per_thread_video_num: (i + 1) * per_thread_video_num] |
|
p = mp.Process(target=sub_processor, args=(lock, i, args, data, |
|
save_path_prefix, save_visualize_path_prefix, |
|
img_folder, sub_video_list)) |
|
p.start() |
|
processes.append(p) |
|
|
|
for p in processes: |
|
p.join() |
|
|
|
end_time = time.time() |
|
total_time = end_time - start_time |
|
|
|
result_dict = dict(result_dict) |
|
num_all_frames_gpus = 0 |
|
for pid, num_all_frames in result_dict.items(): |
|
num_all_frames_gpus += num_all_frames |
|
|
|
print("Total inference time: %.4f s" %(total_time)) |
|
|
|
|
|
def sub_processor(lock, pid, args, data, save_path_prefix, save_visualize_path_prefix, img_folder, video_list): |
|
text = 'processor %d' % pid |
|
with lock: |
|
progress = tqdm( |
|
total=len(video_list), |
|
position=pid, |
|
desc=text, |
|
ncols=0 |
|
) |
|
torch.cuda.set_device(pid) |
|
|
|
|
|
model, criterion, _ = build_model(args) |
|
device = args.device |
|
model.to(device) |
|
|
|
model_without_ddp = model |
|
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
|
|
if pid == 0: |
|
print('number of params:', n_parameters) |
|
|
|
if args.resume: |
|
checkpoint = torch.load(args.resume, map_location='cpu') |
|
missing_keys, unexpected_keys = model_without_ddp.load_state_dict(checkpoint['model'], strict=False) |
|
unexpected_keys = [k for k in unexpected_keys if not (k.endswith('total_params') or k.endswith('total_ops'))] |
|
if len(missing_keys) > 0: |
|
print('Missing Keys: {}'.format(missing_keys)) |
|
if len(unexpected_keys) > 0: |
|
print('Unexpected Keys: {}'.format(unexpected_keys)) |
|
else: |
|
raise ValueError('Please specify the checkpoint for inference.') |
|
|
|
|
|
palette_img = os.path.join(args.davis_path, "valid/Annotations/blackswan/00000.png") |
|
palette = Image.open(palette_img).getpalette() |
|
|
|
|
|
num_all_frames = 0 |
|
model.eval() |
|
|
|
|
|
for video in video_list: |
|
metas = [] |
|
|
|
expressions = data[video]["expressions"] |
|
expression_list = list(expressions.keys()) |
|
num_expressions = len(expression_list) |
|
video_len = len(data[video]["frames"]) |
|
|
|
|
|
for i in range(num_expressions): |
|
meta = {} |
|
meta["video"] = video |
|
meta["exp"] = expressions[expression_list[i]]["exp"] |
|
meta["exp_id"] = expression_list[i] |
|
meta["frames"] = data[video]["frames"] |
|
metas.append(meta) |
|
meta = metas |
|
|
|
|
|
num_obj = num_expressions // 4 |
|
|
|
|
|
for anno_id in range(4): |
|
anno_logits = [] |
|
anno_masks = [] |
|
|
|
for obj_id in range(num_obj): |
|
i = obj_id * 4 + anno_id |
|
video_name = meta[i]["video"] |
|
exp = meta[i]["exp"] |
|
exp_id = meta[i]["exp_id"] |
|
frames = meta[i]["frames"] |
|
|
|
video_len = len(frames) |
|
|
|
|
|
|
|
all_pred_logits = [] |
|
all_pred_masks = [] |
|
|
|
|
|
for clip_id in range(0, video_len, 36): |
|
frames_ids = [x for x in range(video_len)] |
|
clip_frames_ids = frames_ids[clip_id : clip_id + 36] |
|
clip_len = len(clip_frames_ids) |
|
|
|
|
|
imgs = [] |
|
for t in clip_frames_ids: |
|
frame = frames[t] |
|
img_path = os.path.join(img_folder, video_name, frame + ".jpg") |
|
img = Image.open(img_path).convert('RGB') |
|
origin_w, origin_h = img.size |
|
imgs.append(transform(img)) |
|
|
|
imgs = torch.stack(imgs, dim=0).to(args.device) |
|
img_h, img_w = imgs.shape[-2:] |
|
size = torch.as_tensor([int(img_h), int(img_w)]).to(args.device) |
|
target = {"size": size} |
|
|
|
with torch.no_grad(): |
|
outputs = model([imgs], [exp], [target]) |
|
|
|
pred_logits = outputs["pred_logits"][0] |
|
pred_masks = outputs["pred_masks"][0] |
|
|
|
|
|
pred_scores = pred_logits.sigmoid() |
|
pred_scores = pred_scores.mean(0) |
|
max_scores, _ = pred_scores.max(-1) |
|
_, max_ind = max_scores.max(-1) |
|
max_inds = max_ind.repeat(clip_len) |
|
pred_masks = pred_masks[range(clip_len), max_inds, ...] |
|
pred_masks = pred_masks.unsqueeze(0) |
|
|
|
pred_masks = F.interpolate(pred_masks, size=(origin_h, origin_w), mode='bilinear', align_corners=False) |
|
pred_masks = pred_masks.sigmoid()[0] |
|
|
|
|
|
pred_logits = pred_logits[range(clip_len), max_inds] |
|
all_pred_logits.append(pred_logits) |
|
all_pred_masks.append(pred_masks) |
|
|
|
all_pred_logits = torch.cat(all_pred_logits, dim=0) |
|
all_pred_masks = torch.cat(all_pred_masks, dim=0) |
|
anno_logits.append(all_pred_logits) |
|
anno_masks.append(all_pred_masks) |
|
|
|
|
|
anno_logits = torch.stack(anno_logits) |
|
anno_masks = torch.stack(anno_masks) |
|
t, h, w = anno_masks.shape[-3:] |
|
anno_masks[anno_masks < 0.5] = 0.0 |
|
background = 0.1 * torch.ones(1, t, h, w).to(args.device) |
|
anno_masks = torch.cat([background, anno_masks], dim=0) |
|
out_masks = torch.argmax(anno_masks, dim=0) |
|
|
|
out_masks = out_masks.detach().cpu().numpy().astype(np.uint8) |
|
|
|
|
|
anno_save_path = os.path.join(save_path_prefix, f"anno_{anno_id}", video) |
|
if not os.path.exists(anno_save_path): |
|
os.makedirs(anno_save_path) |
|
for f in range(out_masks.shape[0]): |
|
img_E = Image.fromarray(out_masks[f]) |
|
img_E.putpalette(palette) |
|
img_E.save(os.path.join(anno_save_path, '{:05d}.png'.format(f))) |
|
|
|
|
|
with lock: |
|
progress.update(1) |
|
result_dict[str(pid)] = num_all_frames |
|
with lock: |
|
progress.close() |
|
|
|
|
|
|
|
|
|
def box_cxcywh_to_xyxy(x): |
|
x_c, y_c, w, h = x.unbind(1) |
|
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), |
|
(x_c + 0.5 * w), (y_c + 0.5 * h)] |
|
return torch.stack(b, dim=1) |
|
|
|
def rescale_bboxes(out_bbox, size): |
|
img_w, img_h = size |
|
b = box_cxcywh_to_xyxy(out_bbox) |
|
b = b.cpu() * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32) |
|
return b |
|
|
|
|
|
|
|
def draw_reference_points(draw, reference_points, img_size, color): |
|
W, H = img_size |
|
for i, ref_point in enumerate(reference_points): |
|
init_x, init_y = ref_point |
|
x, y = W * init_x, H * init_y |
|
cur_color = color |
|
draw.line((x-10, y, x+10, y), tuple(cur_color), width=4) |
|
draw.line((x, y-10, x, y+10), tuple(cur_color), width=4) |
|
|
|
def draw_sample_points(draw, sample_points, img_size, color_list): |
|
alpha = 255 |
|
for i, samples in enumerate(sample_points): |
|
for sample in samples: |
|
x, y = sample |
|
cur_color = color_list[i % len(color_list)][::-1] |
|
cur_color += [alpha] |
|
draw.ellipse((x-2, y-2, x+2, y+2), |
|
fill=tuple(cur_color), outline=tuple(cur_color), width=1) |
|
|
|
def vis_add_mask(img, mask, color): |
|
origin_img = np.asarray(img.convert('RGB')).copy() |
|
color = np.array(color) |
|
|
|
mask = mask.reshape(mask.shape[0], mask.shape[1]).astype('uint8') |
|
mask = mask > 0.5 |
|
|
|
origin_img[mask] = origin_img[mask] * 0.5 + color * 0.5 |
|
origin_img = Image.fromarray(origin_img) |
|
return origin_img |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser('ReferFormer inference script', parents=[opts.get_args_parser()]) |
|
args = parser.parse_args() |
|
main(args) |
|
|
|
|