VRIS_vip / RIS-DMMI /lib /mask_predictor.py
dianecy's picture
Upload folder using huggingface_hub
0b32e3c verified
raw
history blame
5.67 kB
import torch
from torch import nn
from torch.nn import functional as F
import pdb
class CrossLayerFuse(nn.Module):
def __init__(self, in_dims1, in_dims2, out_dims):
super(CrossLayerFuse, self).__init__()
self.linear = nn.Linear(in_dims1 + in_dims2, out_dims)
self.adpool = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, defea, x):
x_pre = defea
x = self.adpool(x).view(x.shape[0], x.shape[1])
x1 = torch.cat([x_pre, x], dim=1)
x1 = self.linear(x1)
return x1
class Transformer_Fusion(nn.Module):
def __init__(self, dim=768, nhead=8, num_layers=1):
super(Transformer_Fusion, self).__init__()
self.decoder_layer = nn.TransformerDecoderLayer(d_model=dim, nhead=nhead)
self.transformer_model = nn.TransformerDecoder(self.decoder_layer, num_layers=num_layers)
def forward(self, vis, lan_full):
WW, HH = vis.shape[2], vis.shape[3]
vis = vis.view(vis.shape[0], vis.shape[1], -1)
vis = vis.permute(2, 0, 1)
lan = lan_full.permute(2, 0, 1)
vis = self.transformer_model(vis, lan)
vis = vis.permute(1, 2, 0)
vis = vis.view(vis.shape[0], vis.shape[1], WW, HH)
return vis
class Language_Transformer(nn.Module):
def __init__(self, hidden_size, lan_size):
super(Language_Transformer, self).__init__()
self.decoder_layer = nn.TransformerDecoderLayer(d_model=768, nhead=8)
self.transformer_model = nn.TransformerDecoder(self.decoder_layer, num_layers=1)
self.conv1 = nn.Conv2d(hidden_size, lan_size, 3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(lan_size)
self.relu1 = nn.ReLU()
def forward(self, vis, lan):
vis = self.conv1(vis)
vis = self.bn1(vis)
vis = self.relu1(vis)
vis = vis.view(vis.shape[0], vis.shape[1], -1)
vis = vis.permute(2, 0, 1)
lan = lan.permute(2, 0, 1)
out = self.transformer_model(lan, vis)
out = out.permute(1, 2, 0)
return out
class Decoder(nn.Module):
def __init__(self, c4_dims, factor=2):
super(Decoder, self).__init__()
lan_size = 768
hidden_size = lan_size
c4_size = c4_dims
c3_size = c4_dims//(factor**1)
c2_size = c4_dims//(factor**2)
c1_size = c4_dims//(factor**3)
self.adpool = nn.AdaptiveAvgPool2d((1, 1))
self.conv1_4 = nn.Conv2d(c4_size+c3_size, hidden_size, 3, padding=1, bias=False)
self.bn1_4 = nn.BatchNorm2d(hidden_size)
self.relu1_4 = nn.ReLU()
self.conv2_4 = nn.Conv2d(hidden_size, hidden_size, 3, padding=1, bias=False)
self.bn2_4 = nn.BatchNorm2d(hidden_size)
self.relu2_4 = nn.ReLU()
self.transformer_fusion1 = Transformer_Fusion(dim=768, nhead=8, num_layers=1)
self.conv1_3 = nn.Conv2d(hidden_size + c2_size, hidden_size, 3, padding=1, bias=False)
self.bn1_3 = nn.BatchNorm2d(hidden_size)
self.relu1_3 = nn.ReLU()
self.conv2_3 = nn.Conv2d(hidden_size, hidden_size, 3, padding=1, bias=False)
self.bn2_3 = nn.BatchNorm2d(hidden_size)
self.relu2_3 = nn.ReLU()
self.crossfuse1 = CrossLayerFuse(hidden_size, hidden_size, lan_size)
self.transformer_fusion2 = Transformer_Fusion(dim=768, nhead=8, num_layers=1)
self.conv1_2 = nn.Conv2d(hidden_size + c1_size, hidden_size, 3, padding=1, bias=False)
self.bn1_2 = nn.BatchNorm2d(hidden_size)
self.relu1_2 = nn.ReLU()
self.conv2_2 = nn.Conv2d(hidden_size, hidden_size, 3, padding=1, bias=False)
self.bn2_2 = nn.BatchNorm2d(hidden_size)
self.relu2_2 = nn.ReLU()
self.conv1_1 = nn.Conv2d(hidden_size, 2, 1)
self.lan_func = Language_Transformer(hidden_size, lan_size=768)
self.crossfuse2 = CrossLayerFuse(lan_size, hidden_size, lan_size)
def forward(self, lan_full, lan, x_c4, x_c3, x_c2, x_c1):
# fuse Y4 and Y3
if x_c4.size(-2) < x_c3.size(-2) or x_c4.size(-1) < x_c3.size(-1):
x_c4 = F.interpolate(input=x_c4, size=(x_c3.size(-2), x_c3.size(-1)), mode='bilinear', align_corners=True)
x = torch.cat([x_c4, x_c3], dim=1)
x = self.conv1_4(x)
x = self.bn1_4(x)
x = self.relu1_4(x)
x = self.conv2_4(x)
x = self.bn2_4(x)
x = self.relu2_4(x) # [B, 512, 30, 30]
de_feat = self.adpool(x).view(x.shape[0], x.shape[1])
x = self.transformer_fusion1(x, lan_full)
# fuse top-down features and Y2 features and pre1
if x.size(-2) < x_c2.size(-2) or x.size(-1) < x_c2.size(-1):
x = F.interpolate(input=x, size=(x_c2.size(-2), x_c2.size(-1)), mode='bilinear', align_corners=True)
x = torch.cat([x, x_c2], dim=1)
x = self.conv1_3(x)
x = self.bn1_3(x)
x = self.relu1_3(x)
x = self.conv2_3(x)
x = self.bn2_3(x)
x = self.relu2_3(x) # [B, 512, 60, 60]
new_lan = self.lan_func(x, lan)
de_feat = self.crossfuse1(de_feat, x)
x = self.transformer_fusion2(x, lan_full)
# fuse top-down features and Y1 features
if x.size(-2) < x_c1.size(-2) or x.size(-1) < x_c1.size(-1):
x = F.interpolate(input=x, size=(x_c1.size(-2), x_c1.size(-1)), mode='bilinear', align_corners=True)
x = torch.cat([x, x_c1], dim=1)
x = self.conv1_2(x)
x = self.bn1_2(x)
x = self.relu1_2(x)
x = self.conv2_2(x)
x = self.bn2_2(x)
x = self.relu2_2(x) # [B, 512, 120, 120]
de_feat = self.crossfuse2(de_feat, x)
return de_feat, new_lan, self.conv1_1(x)