VRIS_vip / LAVT-RIS /logs /lavt_gsds_best2.txt
dianecy's picture
Upload folder using huggingface_hub
8d82201 verified
raw
history blame
8.31 kB
/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/timm/models/layers/__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers
warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning)
/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/torch/functional.py:478: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2894.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
Image size: 480
loading dataset refcocog into memory...
creating index...
index created.
DONE (t=6.57s)
lavt_one
Window size 12!
Randomly initialize Multi-modal Swin Transformer weights.
/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/torchvision/transforms/functional.py:417: UserWarning: Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
warnings.warn(
/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/torchvision/transforms/functional.py:417: UserWarning: Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
warnings.warn(
/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/torchvision/transforms/functional.py:417: UserWarning: Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
warnings.warn(
/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/torchvision/transforms/functional.py:417: UserWarning: Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
warnings.warn(
Test: [ 0/5023] eta: 4:35:29 time: 3.2908 data: 0.9735 max mem: 1021
Test: [ 100/5023] eta: 0:15:52 time: 0.1678 data: 0.0017 max mem: 1021
Test: [ 200/5023] eta: 0:14:13 time: 0.1593 data: 0.0017 max mem: 1021
Test: [ 300/5023] eta: 0:13:38 time: 0.1646 data: 0.0017 max mem: 1021
Test: [ 400/5023] eta: 0:13:07 time: 0.1618 data: 0.0017 max mem: 1021
Test: [ 500/5023] eta: 0:12:44 time: 0.1660 data: 0.0017 max mem: 1021
Test: [ 600/5023] eta: 0:12:24 time: 0.1698 data: 0.0017 max mem: 1021
Test: [ 700/5023] eta: 0:12:04 time: 0.1577 data: 0.0017 max mem: 1021
Test: [ 800/5023] eta: 0:11:47 time: 0.1659 data: 0.0016 max mem: 1021
Test: [ 900/5023] eta: 0:11:30 time: 0.1665 data: 0.0017 max mem: 1021
Test: [1000/5023] eta: 0:11:11 time: 0.1666 data: 0.0018 max mem: 1021
Test: [1100/5023] eta: 0:10:53 time: 0.1623 data: 0.0017 max mem: 1021
Test: [1200/5023] eta: 0:10:37 time: 0.1665 data: 0.0016 max mem: 1021
Test: [1300/5023] eta: 0:10:19 time: 0.1634 data: 0.0020 max mem: 1021
Test: [1400/5023] eta: 0:10:01 time: 0.1546 data: 0.0017 max mem: 1021
Test: [1500/5023] eta: 0:09:45 time: 0.1664 data: 0.0018 max mem: 1021
Test: [1600/5023] eta: 0:09:27 time: 0.1630 data: 0.0018 max mem: 1021
Test: [1700/5023] eta: 0:09:10 time: 0.1624 data: 0.0017 max mem: 1021
Test: [1800/5023] eta: 0:08:54 time: 0.1672 data: 0.0019 max mem: 1021
Test: [1900/5023] eta: 0:08:37 time: 0.1668 data: 0.0018 max mem: 1021
Test: [2000/5023] eta: 0:08:20 time: 0.1706 data: 0.0017 max mem: 1021
Test: [2100/5023] eta: 0:08:03 time: 0.1546 data: 0.0016 max mem: 1021
Test: [2200/5023] eta: 0:07:46 time: 0.1504 data: 0.0018 max mem: 1021
Test: [2300/5023] eta: 0:07:29 time: 0.1715 data: 0.0018 max mem: 1021
Test: [2400/5023] eta: 0:07:13 time: 0.1628 data: 0.0017 max mem: 1021
Test: [2500/5023] eta: 0:06:56 time: 0.1668 data: 0.0017 max mem: 1021
Test: [2600/5023] eta: 0:06:40 time: 0.1626 data: 0.0017 max mem: 1021
Test: [2700/5023] eta: 0:06:23 time: 0.1672 data: 0.0019 max mem: 1021
Test: [2800/5023] eta: 0:06:07 time: 0.1666 data: 0.0019 max mem: 1021
Test: [2900/5023] eta: 0:05:50 time: 0.1693 data: 0.0016 max mem: 1021
Test: [3000/5023] eta: 0:05:33 time: 0.1656 data: 0.0016 max mem: 1021
Test: [3100/5023] eta: 0:05:17 time: 0.1689 data: 0.0016 max mem: 1021
Test: [3200/5023] eta: 0:05:00 time: 0.1612 data: 0.0016 max mem: 1021
Test: [3300/5023] eta: 0:04:43 time: 0.1610 data: 0.0016 max mem: 1021
Test: [3400/5023] eta: 0:04:27 time: 0.1450 data: 0.0016 max mem: 1021
Test: [3500/5023] eta: 0:04:10 time: 0.1572 data: 0.0016 max mem: 1021
Test: [3600/5023] eta: 0:03:53 time: 0.1648 data: 0.0016 max mem: 1021
Test: [3700/5023] eta: 0:03:37 time: 0.1651 data: 0.0016 max mem: 1021
Test: [3800/5023] eta: 0:03:21 time: 0.1691 data: 0.0018 max mem: 1021
Test: [3900/5023] eta: 0:03:04 time: 0.1574 data: 0.0016 max mem: 1021
Test: [4000/5023] eta: 0:02:48 time: 0.1526 data: 0.0016 max mem: 1021
Test: [4100/5023] eta: 0:02:31 time: 0.1569 data: 0.0016 max mem: 1021
Test: [4200/5023] eta: 0:02:14 time: 0.1611 data: 0.0016 max mem: 1021
Test: [4300/5023] eta: 0:01:58 time: 0.1651 data: 0.0016 max mem: 1021
Test: [4400/5023] eta: 0:01:41 time: 0.1569 data: 0.0016 max mem: 1021
Test: [4500/5023] eta: 0:01:25 time: 0.1529 data: 0.0016 max mem: 1021
Test: [4600/5023] eta: 0:01:09 time: 0.1493 data: 0.0016 max mem: 1021
Test: [4700/5023] eta: 0:00:52 time: 0.1653 data: 0.0016 max mem: 1021
Test: [4800/5023] eta: 0:00:36 time: 0.1614 data: 0.0016 max mem: 1021
Test: [4900/5023] eta: 0:00:20 time: 0.1609 data: 0.0016 max mem: 1021
Test: [5000/5023] eta: 0:00:03 time: 0.1655 data: 0.0016 max mem: 1021
Test: Total time: 0:13:40
Final results:
Mean IoU is 65.23
[email protected] = 73.42
[email protected] = 68.66
[email protected] = 61.96
[email protected] = 51.37
[email protected] = 26.91
overall IoU = 63.21
/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/timm/models/layers/__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers
warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning)
/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/torch/functional.py:478: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2894.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
Image size: 480
Easy & Hard Example Experiments - dataset : refcocog, split : motion
loading dataset refcocog into memory...
creating index...
index created.
DONE (t=6.31s)
lavt_one
Window size 12!
Randomly initialize Multi-modal Swin Transformer weights.
/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/torchvision/transforms/functional.py:417: UserWarning: Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
warnings.warn(
/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/torchvision/transforms/functional.py:417: UserWarning: Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
warnings.warn(
/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/torchvision/transforms/functional.py:417: UserWarning: Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
warnings.warn(
/home/chaeyun/.conda/envs/cris/lib/python3.9/site-packages/torchvision/transforms/functional.py:417: UserWarning: Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
warnings.warn(
Test: [ 0/151] eta: 0:08:15 time: 3.2817 data: 1.0697 max mem: 1021
Test: [100/151] eta: 0:00:05 time: 0.0856 data: 0.0016 max mem: 1021
Test: Total time: 0:00:16
Final results:
Mean IoU is 60.97
[email protected] = 69.54
[email protected] = 65.56
[email protected] = 58.94
[email protected] = 57.62
[email protected] = 33.11
overall IoU = 57.00