VRIS_vip / LAVT-RIS /donghwa /scripts /submit_train_refcocog_mosaic_retrieval.sh
dianecy's picture
Upload folder using huggingface_hub
8d82201 verified
raw
history blame
2.55 kB
#!/bin/bash
#SBATCH --job-name=lavt_ccgur # Submit a job named "example"
#SBATCH [email protected]
#SBATCH --mail-type=BEGIN,END,FAIL
#SBATCH --partition=a3000 # a6000 or a100
#SBATCH --gres=gpu:2
#SBATCH --time=7-00:00:00 # d-hh:mm:ss, max time limit
#SBATCH --mem=84000 # cpu memory size
#SBATCH --cpus-per-task=8 # cpu num
#SBATCH --output=log_retrieval_refcocog_umd_lavt_one.txt # std output filename
ml cuda/11.0 # ํ•„์š”ํ•œ ์ฟ ๋‹ค ๋ฒ„์ „ ๋กœ๋“œ
eval "$(conda shell.bash hook)" # Initialize Conda Environment
conda activate lavt # Activate your conda environment
# train
# mkdir ./models
# mkdir ./models/gref_umd/
# srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 12345 train_mosaic.py --model lavt --dataset refcocog --splitBy umd --model_id gref_umd --batch-size 14 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/gref_umd/output
# mkdir ./models/mosaic_gref_umd_lavt_one/
# srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 12345 train_mosaic.py --model lavt_one --dataset refcocog --splitBy umd --model_id mosaic_gref_umd_lavt_one --batch-size 14 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/mosaic_gref_umd_lavt_one/output
# mkdir ./models/gref_google
# srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 12345 train_mosaic.py --model lavt_one --dataset refcocog --splitBy google --model_id gref_google_lavt_one --batch-size 8 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/mosaic_gref_google_lavt_one/output
mkdir ./experiments/retrieval_gref_umd_433_0up
srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 23147
train_mosaic_retrieval.py --model lavt_one --dataset refcocog --splitBy umd
--model_id retrieval_gref_umd_433_0up --batch-size 16 --lr 0.00005
--wd 1e-2 --swin_type base
--pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth
--epochs 40 --img_size 480
--config config/retrieval_433_0up.yaml
--resume ./checkpoints/model_best_retrieval_gref_umd_433_0up.pth
2>&1 | tee ./experiments/retrieval_gref_umd_433_0up/log2.txt