VRIS_vip / LAVT-RIS /donghwa /scripts /submit_train_refcoco+.sh
dianecy's picture
Upload folder using huggingface_hub
8d82201 verified
raw
history blame
1.47 kB
#!/bin/bash
#SBATCH --job-name=lavt_cc+ # Submit a job named "example"
#SBATCH [email protected]
#SBATCH --mail-type=BEGIN,END,FAIL
#SBATCH --partition=a100 # a6000 or a100
#SBATCH --gres=gpu:2
#SBATCH --time=7-00:00:00 # d-hh:mm:ss, max time limit
#SBATCH --mem=84000 # cpu memory size
#SBATCH --cpus-per-task=8 # cpu num
#SBATCH --output=log_refcoco+_lavt_one.txt # std output filename
ml cuda/11.0 # ํ•„์š”ํ•œ ์ฟ ๋‹ค ๋ฒ„์ „ ๋กœ๋“œ
eval "$(conda shell.bash hook)" # Initialize Conda Environment
conda activate lavt # Activate your conda environment
# train
# mkdir ./models
# mkdir ./models/refcoco+
# CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 12345 train.py --model lavt --dataset refcoco+ --model_id refcoco+ --batch-size 8 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/refcoco+/output
mkdir ./models/refcoco+_lavt_one
srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 11115 train.py --model lavt_one --dataset refcoco+ --model_id refcoco+_lavt_one --batch-size 14 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 50 --img_size 480 2>&1 | tee ./models/refcoco+_lavt_one/output