VRIS_vip / LAVT-RIS /donghwa /scripts /submit_test_n_obj.sh
dianecy's picture
Upload folder using huggingface_hub
8d82201 verified
raw
history blame
5.53 kB
#!/bin/bash
#SBATCH --job-name=n_obj_ours # Submit a job named "example"
#SBATCH [email protected]
#SBATCH --mail-type=BEGIN,END,FAIL
#SBATCH --partition=a5000 # a6000 or a100
#SBATCH --gres=gpu:1
#SBATCH --time=7-00:00:00 # d-hh:mm:ss, max time limit
#SBATCH --mem=48000 # cpu memory size
#SBATCH --cpus-per-task=4 # cpu num
#SBATCH --output=log_refcocog_umd_repro_n_obj.txt # std output filename
ml cuda/11.0 # ํ•„์š”ํ•œ ์ฟ ๋‹ค ๋ฒ„์ „ ๋กœ๋“œ
eval "$(conda shell.bash hook)" # Initialize Conda Environment
conda activate lavt # Activate your conda environment
# ckpt
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \
# --resume checkpoints/ckpt_lavt_one/gref_umd.pth --workers 4 --ddp_trained_weights --window12 --img_size 480 \
# --config config/n_obj/n_12.yaml
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \
# --resume checkpoints/ckpt_lavt_one/gref_umd.pth --workers 4 --ddp_trained_weights --window12 --img_size 480 \
# --config config/n_obj/n_34.yaml
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \
# --resume checkpoints/ckpt_lavt_one/gref_umd.pth --workers 4 --ddp_trained_weights --window12 --img_size 480 \
# --config config/n_obj/n_56.yaml
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \
# --resume checkpoints/ckpt_lavt_one/gref_umd.pth --workers 4 --ddp_trained_weights --window12 --img_size 480 \
# --config config/n_obj/n_78.yaml
# repro
srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \
--resume checkpoints/repro_lavt_one/model_best_gref_umd_lavt_one.pth \
--workers 4 --ddp_trained_weights --window12 --img_size 480 \
--config config/n_obj/n_12.yaml
srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \
--resume checkpoints/repro_lavt_one/model_best_gref_umd_lavt_one.pth \
--workers 4 --ddp_trained_weights --window12 --img_size 480 \
--config config/n_obj/n_34.yaml
srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \
--resume checkpoints/repro_lavt_one/model_best_gref_umd_lavt_one.pth \
--workers 4 --ddp_trained_weights --window12 --img_size 480 \
--config config/n_obj/n_56.yaml
srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \
--resume checkpoints/repro_lavt_one/model_best_gref_umd_lavt_one.pth \
--workers 4 --ddp_trained_weights --window12 --img_size 480 \
--config config/n_obj/n_78.yaml
# our best_model (retrieval)
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \
# --resume experiments/refcocog_umd/retrieval_gref_umd_433_10up_40epoch/model_best_retrieval_gref_umd_433_10up_40epoch.pth \
# --workers 4 --ddp_trained_weights --window12 --img_size 480 \
# --config config/n_obj/n_12.yaml
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \
# --resume experiments/refcocog_umd/retrieval_gref_umd_433_10up_40epoch/model_best_retrieval_gref_umd_433_10up_40epoch.pth \
# --workers 4 --ddp_trained_weights --window12 --img_size 480 \
# --config config/n_obj/n_34.yaml
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \
# --resume experiments/refcocog_umd/retrieval_gref_umd_433_10up_40epoch/model_best_retrieval_gref_umd_433_10up_40epoch.pth \
# --workers 4 --ddp_trained_weights --window12 --img_size 480 \
# --config config/n_obj/n_56.yaml
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \
# --resume experiments/refcocog_umd/retrieval_gref_umd_433_10up_40epoch/model_best_retrieval_gref_umd_433_10up_40epoch.pth \
# --workers 4 --ddp_trained_weights --window12 --img_size 480 \
# --config config/n_obj/n_78.yaml
# random
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \
# --resume checkpoints/random_550_lavt_one/model_best_mosaic_gref_umd_lavt_one.pth \
# --workers 4 --ddp_trained_weights --window12 --img_size 480 \
# --config config/n_obj/n_12.yaml
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \
# --resume checkpoints/random_550_lavt_one/model_best_mosaic_gref_umd_lavt_one.pth \
# --workers 4 --ddp_trained_weights --window12 --img_size 480 \
# --config config/n_obj/n_34.yaml
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \
# --resume checkpoints/random_550_lavt_one/model_best_mosaic_gref_umd_lavt_one.pth \
# --workers 4 --ddp_trained_weights --window12 --img_size 480 \
# --config config/n_obj/n_56.yaml
# srun python test_n_obj.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split test \
# --resume checkpoints/random_550_lavt_one/model_best_mosaic_gref_umd_lavt_one.pth \
# --workers 4 --ddp_trained_weights --window12 --img_size 480 \
# --config config/n_obj/n_78.yaml