#SBATCH --job-name=lavt_easyhard # Submit a job named "example" | |
#SBATCH [email protected] | |
#SBATCH --mail-type=BEGIN,END,FAIL | |
#SBATCH --partition=a4000 # a6000 or a100 | |
#SBATCH --gres=gpu:1 | |
#SBATCH --time=7-00:00:00 # d-hh:mm:ss, max time limit | |
#SBATCH --mem=48000 # cpu memory size | |
#SBATCH --cpus-per-task=4 # cpu num | |
#SBATCH --output=log_refcocog_umd_ckpt_testAB.txt # std output filename | |
ml cuda/11.0 # ํ์ํ ์ฟ ๋ค ๋ฒ์ ๋ก๋ | |
eval "$(conda shell.bash hook)" # Initialize Conda Environment | |
conda activate lavt # Activate your conda environment | |
# test lavt_one | |
srun python test.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split testA --resume ./checkpoints/ckpt_lavt_one/gref_umd.pth --workers 4 --ddp_trained_weights --window12 --img_size 480 | |
srun python test.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split testB --resume ./checkpoints/ckpt_lavt_one/gref_umd.pth --workers 4 --ddp_trained_weights --window12 --img_size 480 | |
# srun python test.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split testA --resume ./checkpoints/repro_lavt_one/model_best_gref_umd_lavt_one.pth --workers 4 --ddp_trained_weights --window12 --img_size 480 | |
# srun python test.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split testB --resume ./checkpoints/repro_lavt_one/model_best_gref_umd_lavt_one.pth --workers 4 --ddp_trained_weights --window12 --img_size 480 | |
# srun python test_mosaic.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split testA --resume ./checkpoints/random_550_lavt_one/model_best_mosaic_gref_umd_lavt_one.pth --workers 4 --ddp_trained_weights --window12 --img_size 480 --config config/random_550.yaml | |
# srun python test_mosaic.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split testB --resume ./checkpoints/random_550_lavt_one/model_best_mosaic_gref_umd_lavt_one.pth --workers 4 --ddp_trained_weights --window12 --img_size 480 --config config/random_550.yaml | |
# srun python test_mosaic.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split testA --resume experiments/refcocog_umd/random_gref_umd_460_40epoch_2/model_best_random_gref_umd_460_40epoch_2.pth --workers 4 --ddp_trained_weights --window12 --img_size 480 --config config/random_460.yaml | |
# srun python test_mosaic.py --model lavt_one --swin_type base --dataset refcocog --splitBy umd --split testB --resume experiments/refcocog_umd/random_gref_umd_460_40epoch_2/model_best_random_gref_umd_460_40epoch_2.pth --workers 4 --ddp_trained_weights --window12 --img_size 480 --config config/random_460.yaml | |
# retrieval | |
# srun python test_mosaic_retrieval.py --model lavt_one --swin_type base --dataset refcocog \ | |
# --splitBy umd --split testA --resume experiments/refcocog_umd/retrieval_filter_gref_umd_433_10up_top200/model_best_retrieval_filter_gref_umd_433_10up_top200.pth \ | |
# --workers 4 --ddp_trained_weights --window12 --img_size 480 --config config/retrieval_433_10up.yaml | |
# srun python test_mosaic_retrieval.py --model lavt_one --swin_type base --dataset refcocog \ | |
# --splitBy umd --split testB --resume experiments/refcocog_umd/retrieval_filter_gref_umd_433_10up_top200/model_best_retrieval_filter_gref_umd_433_10up_top200.pth \ | |
# --workers 4 --ddp_trained_weights --window12 --img_size 480 --config config/retrieval_433_10up.yaml | |