VRIS_vip / LAVT-RIS /data /dataset_refer_zom.py
dianecy's picture
Upload folder using huggingface_hub
8d82201 verified
raw
history blame
11 kB
import os
import sys
import json
import torch.utils.data as data
import torch
import itertools
import numpy as np
from PIL import Image
import pdb
import copy
from random import choice
from bert.tokenization_bert import BertTokenizer
from refer.refer_zom import ZREFER
import copy
import random
import torch
from collections import defaultdict
import torch
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from args import get_parser
import random
# Dataset configuration initialization
parser = get_parser()
args = parser.parse_args()
class Referzom_Dataset(data.Dataset):
def __init__(self,
args,
image_transforms=None,
target_transforms=None,
split='train',
eval_mode=False):
self.classes = []
self.image_transforms = image_transforms
self.target_transform = target_transforms
self.split = split
self.refer = ZREFER(args.refer_data_root, args.dataset, args.splitBy)
self.dataset_type = args.dataset
self.max_tokens = 20
ref_ids = self.refer.getRefIds(split=self.split)
self.img_ids = self.refer.getImgIds(ref_ids)
all_imgs = self.refer.Imgs
self.imgs = list(all_imgs[i] for i in self.img_ids)
self.ref_ids = ref_ids
self.input_ids = []
self.attention_masks = []
self.tokenizer = BertTokenizer.from_pretrained(args.bert_tokenizer)
self.ROOT = '/data2/dataset/RefCOCO/VRIS'
self.metric_learning = args.metric_learning
self.exclude_multiobj = args.exclude_multiobj
self.metric_mode = args.metric_mode
self.exclude_position = False
if self.metric_learning and eval_mode == False:
self.hardneg_prob = args.hn_prob
self.multi_obj_ref_ids = self._load_multi_obj_ref_ids()
self.hardpos_meta, self.hardneg_meta = self._load_metadata()
else:
self.hardneg_prob = 0.0
self.multi_obj_ref_ids = None
self.hardpos_meta, self.hardneg_meta = None, None
self.eval_mode = eval_mode
self.zero_sent_id_list = []
self.one_sent_id_list = []
self.all_sent_id_list = []
self.sent_2_refid = {}
for r in ref_ids:
ref = self.refer.loadRefs(r)
source_type = ref[0]['source']
for sent_dict in ref[0]['sentences']:
sent_id = sent_dict['sent_id']
self.sent_2_refid[sent_id] = r
self.all_sent_id_list.append(sent_id)
if source_type=='zero':
self.zero_sent_id_list.append(sent_id)
else:
self.one_sent_id_list.append(sent_id)
for r in ref_ids:
ref = self.refer.Refs[r]
sentences_for_ref = []
attentions_for_ref = []
for i, el in enumerate(ref['sentences']):
sentence_raw = el['raw']
attention_mask = [0] * self.max_tokens
padded_input_ids = [0] * self.max_tokens
input_ids = self.tokenizer.encode(text=sentence_raw, add_special_tokens=True)
# truncation of tokens
input_ids = input_ids[:self.max_tokens]
padded_input_ids[:len(input_ids)] = input_ids
attention_mask[:len(input_ids)] = [1]*len(input_ids)
sentences_for_ref.append(torch.tensor(padded_input_ids).unsqueeze(0))
attentions_for_ref.append(torch.tensor(attention_mask).unsqueeze(0))
self.input_ids.extend(sentences_for_ref)
self.attention_masks.extend(attentions_for_ref)
def get_classes(self):
return self.classes
def _tokenize(self, sentence):
attention_mask = [0] * self.max_tokens
padded_input_ids = [0] * self.max_tokens
input_ids = self.tokenizer.encode(text=sentence, add_special_tokens=True)
# truncation of tokens
input_ids = input_ids[:self.max_tokens]
padded_input_ids[:len(input_ids)] = input_ids
attention_mask[:len(input_ids)] = [1]*len(input_ids)
# match shape as (1, max_tokens)
return torch.tensor(padded_input_ids).unsqueeze(0), torch.tensor(attention_mask).unsqueeze(0)
def _load_multi_obj_ref_ids(self):
# Load multi-object reference IDs based on configurations
if not self.exclude_multiobj and not self.exclude_position :
return None
elif self.exclude_position:
multiobj_path = os.path.join(self.ROOT, 'multiobj_ov2_nopos.txt')
elif self.exclude_multiobj :
multiobj_path = os.path.join(self.ROOT, 'multiobj_ov3.txt')
with open(multiobj_path, 'r') as f:
return [int(line.strip()) for line in f.readlines()]
def _load_metadata(self):
hardpos_path = os.path.join(self.ROOT, 'verb_ext_text_example_refzom.json')
with open(hardpos_path, 'r', encoding='utf-8') as f:
hardpos_json = json.load(f)
if "hardpos_only" in self.metric_mode :
hardneg_json = None
# else :
# hardneg_path = os.path.join(self.ROOT, 'hardneg_verb.json')
# with open(hardneg_path, 'r', encoding='utf-8') as q:
# hardneg_json = json.load(q)
return hardpos_json, hardneg_json
def _get_hardpos_verb(self, ref, seg_id, sent_idx) :
if seg_id in self.multi_obj_ref_ids:
return ''
# Extract metadata for hard positives if present
hardpos_dict = self.hardpos_meta.get(str(seg_id), {})
if self.hp_selection == 'strict' :
sent_id_list = list(hardpos_dict.keys())
cur_hardpos = hardpos_dict.get(sent_id_list[sent_idx], {}).get('phrases', [])
else :
cur_hardpos = list(itertools.chain.from_iterable(hardpos_dict[sid]['phrases'] for sid in hardpos_dict))
if cur_hardpos:
# Assign a hard positive verb phrase if available
raw_verb = random.choice(cur_hardpos)
return raw_verb
return ''
def __len__(self):
return len(self.all_sent_id_list)
def __getitem__(self, index):
sent_id = self.all_sent_id_list[index]
this_ref_id = self.sent_2_refid[sent_id]
this_img_id = self.refer.getImgIds(this_ref_id)
this_img = self.refer.Imgs[this_img_id[0]]
IMAGE_DIR = '/data2/dataset/COCO2014/trainval2014/'
img = Image.open(os.path.join(IMAGE_DIR, this_img['file_name'])).convert("RGB")
ref = self.refer.loadRefs(this_ref_id)
if self.dataset_type == 'ref-zom':
source_type = ref[0]['source']
else:
source_type = 'not_zero'
ref_mask = np.array(self.refer.getMask(ref[0])['mask'])
annot = np.zeros(ref_mask.shape)
annot[ref_mask == 1] = 1
annot = Image.fromarray(annot.astype(np.uint8), mode="P")
if self.image_transforms is not None:
img, target = self.image_transforms(img, annot)
if self.eval_mode:
embedding = []
att = []
for s in range(len(self.input_ids[index])):
padded_input_ids = self.input_ids[index][s]
attention_mask = self.attention_masks[index][s]
embedding.append(padded_input_ids.unsqueeze(-1))
att.append(attention_mask.unsqueeze(-1))
tensor_embeddings = torch.cat(embedding, dim=-1)
attention_mask = torch.cat(att, dim=-1)
return img, target, source_type, tensor_embeddings, attention_mask
else:
choice_sent = np.random.choice(len(self.input_ids[index]))
tensor_embeddings = self.input_ids[index][choice_sent]
attention_mask = self.attention_masks[index][choice_sent]
if self.metric_learning :
pos_sent = torch.zeros_like(tensor_embeddings)
pos_attn_mask = torch.zeros_like(attention_mask)
## Only the case with hardpos_ in metric_mode
if 'hardpos_' in self.metric_mode or self.hardneg_prob == 0.0:
pos_type = 'zero'
if 'refined' in self.metric_mode :
pos_sent_picked = self._get_hardpos_verb(ref, this_ref_id, choice_sent)
else :
pos_sents = self.hardpos_meta[str(this_ref_id)].values()
# drop elements with none
pos_sents = [s for s in pos_sents if s is not None]
pos_sent_picked = random.choice(list(pos_sents))
if pos_sent_picked :
pos_type = 'hardpos'
pos_sent, pos_attn_mask = self._tokenize(pos_sent_picked)
pos_sent = pos_sent.squeeze(0) if pos_sent.dim() == 2 and pos_sent.size(0) == 1 else pos_sent
pos_attn_mask = pos_attn_mask.squeeze(0) if pos_attn_mask.size(0) == 1 else pos_attn_mask
return img, target, source_type, tensor_embeddings, attention_mask, pos_sent, pos_attn_mask, pos_type
return img, target, source_type, tensor_embeddings, attention_mask
class Refzom_DistributedSampler(DistributedSampler):
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True):
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
self.one_id_list = dataset.one_sent_id_list
self.zero_id_list = dataset.zero_sent_id_list
self.sent_ids_list = dataset.all_sent_id_list
if self.shuffle==True:
random.shuffle(self.one_id_list)
random.shuffle(self.zero_id_list)
self.sent_id = self.insert_evenly(self.zero_id_list,self.one_id_list)
self.indices = self.get_positions(self.sent_ids_list, self.sent_id)
def get_positions(self, list_a, list_b):
position_dict = {value: index for index, value in enumerate(list_a)}
positions = [position_dict[item] for item in list_b]
return positions
def insert_evenly(self, list_a, list_b):
len_a = len(list_a)
len_b = len(list_b)
block_size = len_b // len_a
result = []
for i in range(len_a):
start = i * block_size
end = (i + 1) * block_size
result.extend(list_b[start:end])
result.append(list_a[i])
remaining = list_b[(len_a * block_size):]
result.extend(remaining)
return result
def __iter__(self):
indices_per_process = self.indices[self.rank::self.num_replicas]
return iter(indices_per_process)