File size: 19,300 Bytes
5c8ef86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
"""
Transforms and data augmentation for sequence level images, bboxes and masks.
"""
import random
import PIL
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as F
from util.box_ops import box_xyxy_to_cxcywh, box_iou
from util.misc import interpolate
import numpy as np
from numpy import random as rand
from PIL import Image
import cv2
class Check(object):
def __init__(self,):
pass
def __call__(self, img, target):
fields = ["labels"]
if "boxes" in target:
fields.append("boxes")
if "masks" in target:
fields.append("masks")
### check if box or mask still exist after transforms
if "boxes" in target or "masks" in target:
if "boxes" in target:
cropped_boxes = target['boxes'].reshape(-1, 2, 2)
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
else:
keep = target['masks'].flatten(1).any(1)
if False in keep:
for k in range(len(keep)):
if not keep[k] and "boxes" in target:
target['boxes'][k] = target['boxes'][k]//1000.0 # [0, 0, 0, 0]
target['valid'] = keep.to(torch.int32)
return img, target
def bbox_overlaps(bboxes1, bboxes2, mode='iou', eps=1e-6):
assert mode in ['iou', 'iof']
bboxes1 = bboxes1.astype(np.float32)
bboxes2 = bboxes2.astype(np.float32)
rows = bboxes1.shape[0]
cols = bboxes2.shape[0]
ious = np.zeros((rows, cols), dtype=np.float32)
if rows * cols == 0:
return ious
exchange = False
if bboxes1.shape[0] > bboxes2.shape[0]:
bboxes1, bboxes2 = bboxes2, bboxes1
ious = np.zeros((cols, rows), dtype=np.float32)
exchange = True
area1 = (bboxes1[:, 2] - bboxes1[:, 0]) * (bboxes1[:, 3] - bboxes1[:, 1])
area2 = (bboxes2[:, 2] - bboxes2[:, 0]) * (bboxes2[:, 3] - bboxes2[:, 1])
for i in range(bboxes1.shape[0]):
x_start = np.maximum(bboxes1[i, 0], bboxes2[:, 0])
y_start = np.maximum(bboxes1[i, 1], bboxes2[:, 1])
x_end = np.minimum(bboxes1[i, 2], bboxes2[:, 2])
y_end = np.minimum(bboxes1[i, 3], bboxes2[:, 3])
overlap = np.maximum(x_end - x_start, 0) * np.maximum(y_end - y_start, 0)
if mode == 'iou':
union = area1[i] + area2 - overlap
else:
union = area1[i] if not exchange else area2
union = np.maximum(union, eps)
ious[i, :] = overlap / union
if exchange:
ious = ious.T
return ious
def crop(clip, target, region):
cropped_image = []
for image in clip:
cropped_image.append(F.crop(image, *region))
target = target.copy()
i, j, h, w = region
# should we do something wrt the original size?
target["size"] = torch.tensor([h, w])
fields = ["labels", "area", "iscrowd"]
if "boxes" in target:
boxes = target["boxes"]
max_size = torch.as_tensor([w, h], dtype=torch.float32)
cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
cropped_boxes = cropped_boxes.clamp(min=0)
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
target["boxes"] = cropped_boxes.reshape(-1, 4)
target["area"] = area
fields.append("boxes")
if "masks" in target:
# FIXME should we update the area here if there are no boxes?
target['masks'] = target['masks'][:, i:i + h, j:j + w]
fields.append("masks")
return cropped_image, target
def hflip(clip, target):
flipped_image = []
for image in clip:
flipped_image.append(F.hflip(image))
w, h = clip[0].size
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0])
target["boxes"] = boxes
if "masks" in target:
target['masks'] = target['masks'].flip(-1)
return flipped_image, target
def vflip(image,target):
flipped_image = []
for image in clip:
flipped_image.append(F.vflip(image))
w, h = clip[0].size
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
boxes = boxes[:, [0, 3, 2, 1]] * torch.as_tensor([1, -1, 1, -1]) + torch.as_tensor([0, h, 0, h])
target["boxes"] = boxes
if "masks" in target:
target['masks'] = target['masks'].flip(1)
return flipped_image, target
def resize(clip, target, size, max_size=None):
# size can be min_size (scalar) or (w, h) tuple
def get_size_with_aspect_ratio(image_size, size, max_size=None):
w, h = image_size
if max_size is not None:
min_original_size = float(min((w, h)))
max_original_size = float(max((w, h)))
if max_original_size / min_original_size * size > max_size:
size = int(round(max_size * min_original_size / max_original_size))
if (w <= h and w == size) or (h <= w and h == size):
return (h, w)
if w < h:
ow = size
oh = int(size * h / w)
else:
oh = size
ow = int(size * w / h)
return (oh, ow)
def get_size(image_size, size, max_size=None):
if isinstance(size, (list, tuple)):
return size[::-1]
else:
return get_size_with_aspect_ratio(image_size, size, max_size)
size = get_size(clip[0].size, size, max_size)
rescaled_image = []
for image in clip:
rescaled_image.append(F.resize(image, size))
if target is None:
return rescaled_image, None
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image[0].size, clip[0].size))
ratio_width, ratio_height = ratios
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
target["boxes"] = scaled_boxes
if "area" in target:
area = target["area"]
scaled_area = area * (ratio_width * ratio_height)
target["area"] = scaled_area
h, w = size
target["size"] = torch.tensor([h, w])
if "masks" in target:
if target['masks'].shape[0]>0:
target['masks'] = interpolate(
target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5
else:
target['masks'] = torch.zeros((target['masks'].shape[0],h,w))
return rescaled_image, target
def pad(clip, target, padding):
# assumes that we only pad on the bottom right corners
padded_image = []
for image in clip:
padded_image.append(F.pad(image, (0, 0, padding[0], padding[1])))
if target is None:
return padded_image, None
target = target.copy()
# should we do something wrt the original size?
target["size"] = torch.tensor(padded_image[0].size[::-1])
if "masks" in target:
target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1]))
return padded_image, target
class RandomCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, img, target):
region = T.RandomCrop.get_params(img, self.size)
return crop(img, target, region)
class RandomSizeCrop(object):
def __init__(self, min_size: int, max_size: int):
self.min_size = min_size
self.max_size = max_size
def __call__(self, img: PIL.Image.Image, target: dict):
w = random.randint(self.min_size, min(img[0].width, self.max_size))
h = random.randint(self.min_size, min(img[0].height, self.max_size))
region = T.RandomCrop.get_params(img[0], [h, w])
return crop(img, target, region)
class CenterCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, img, target):
image_width, image_height = img.size
crop_height, crop_width = self.size
crop_top = int(round((image_height - crop_height) / 2.))
crop_left = int(round((image_width - crop_width) / 2.))
return crop(img, target, (crop_top, crop_left, crop_height, crop_width))
class MinIoURandomCrop(object):
def __init__(self, min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3):
self.min_ious = min_ious
self.sample_mode = (1, *min_ious, 0)
self.min_crop_size = min_crop_size
def __call__(self, img, target):
w,h = img.size
while True:
mode = random.choice(self.sample_mode)
self.mode = mode
if mode == 1:
return img,target
min_iou = mode
boxes = target['boxes'].numpy()
labels = target['labels']
for i in range(50):
new_w = rand.uniform(self.min_crop_size * w, w)
new_h = rand.uniform(self.min_crop_size * h, h)
if new_h / new_w < 0.5 or new_h / new_w > 2:
continue
left = rand.uniform(w - new_w)
top = rand.uniform(h - new_h)
patch = np.array((int(left), int(top), int(left + new_w), int(top + new_h)))
if patch[2] == patch[0] or patch[3] == patch[1]:
continue
overlaps = bbox_overlaps(patch.reshape(-1, 4), boxes.reshape(-1, 4)).reshape(-1)
if len(overlaps) > 0 and overlaps.min() < min_iou:
continue
if len(overlaps) > 0:
def is_center_of_bboxes_in_patch(boxes, patch):
center = (boxes[:, :2] + boxes[:, 2:]) / 2
mask = ((center[:, 0] > patch[0]) * (center[:, 1] > patch[1]) * (center[:, 0] < patch[2]) * (center[:, 1] < patch[3]))
return mask
mask = is_center_of_bboxes_in_patch(boxes, patch)
if False in mask:
continue
#TODO: use no center boxes
#if not mask.any():
# continue
boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:])
boxes[:, :2] = boxes[:, :2].clip(min=patch[:2])
boxes -= np.tile(patch[:2], 2)
target['boxes'] = torch.tensor(boxes)
img = np.asarray(img)[patch[1]:patch[3], patch[0]:patch[2]]
img = Image.fromarray(img)
width, height = img.size
target['orig_size'] = torch.tensor([height,width])
target['size'] = torch.tensor([height,width])
return img,target
class RandomContrast(object):
def __init__(self, lower=0.5, upper=1.5):
self.lower = lower
self.upper = upper
assert self.upper >= self.lower, "contrast upper must be >= lower."
assert self.lower >= 0, "contrast lower must be non-negative."
def __call__(self, image, target):
if rand.randint(2):
alpha = rand.uniform(self.lower, self.upper)
image *= alpha
return image, target
class RandomBrightness(object):
def __init__(self, delta=32):
assert delta >= 0.0
assert delta <= 255.0
self.delta = delta
def __call__(self, image, target):
if rand.randint(2):
delta = rand.uniform(-self.delta, self.delta)
image += delta
return image, target
class RandomSaturation(object):
def __init__(self, lower=0.5, upper=1.5):
self.lower = lower
self.upper = upper
assert self.upper >= self.lower, "contrast upper must be >= lower."
assert self.lower >= 0, "contrast lower must be non-negative."
def __call__(self, image, target):
if rand.randint(2):
image[:, :, 1] *= rand.uniform(self.lower, self.upper)
return image, target
class RandomHue(object): #
def __init__(self, delta=18.0):
assert delta >= 0.0 and delta <= 360.0
self.delta = delta
def __call__(self, image, target):
if rand.randint(2):
image[:, :, 0] += rand.uniform(-self.delta, self.delta)
image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
return image, target
class RandomLightingNoise(object):
def __init__(self):
self.perms = ((0, 1, 2), (0, 2, 1),
(1, 0, 2), (1, 2, 0),
(2, 0, 1), (2, 1, 0))
def __call__(self, image, target):
if rand.randint(2):
swap = self.perms[rand.randint(len(self.perms))]
shuffle = SwapChannels(swap) # shuffle channels
image = shuffle(image)
return image, target
class ConvertColor(object):
def __init__(self, current='BGR', transform='HSV'):
self.transform = transform
self.current = current
def __call__(self, image, target):
if self.current == 'BGR' and self.transform == 'HSV':
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
elif self.current == 'HSV' and self.transform == 'BGR':
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
else:
raise NotImplementedError
return image, target
class SwapChannels(object):
def __init__(self, swaps):
self.swaps = swaps
def __call__(self, image):
image = image[:, :, self.swaps]
return image
class PhotometricDistort(object):
def __init__(self):
self.pd = [
RandomContrast(),
ConvertColor(transform='HSV'),
RandomSaturation(),
RandomHue(),
ConvertColor(current='HSV', transform='BGR'),
RandomContrast()
]
self.rand_brightness = RandomBrightness()
self.rand_light_noise = RandomLightingNoise()
def __call__(self,clip,target):
imgs = []
for img in clip:
img = np.asarray(img).astype('float32')
img, target = self.rand_brightness(img, target)
if rand.randint(2):
distort = Compose(self.pd[:-1])
else:
distort = Compose(self.pd[1:])
img, target = distort(img, target)
img, target = self.rand_light_noise(img, target)
imgs.append(Image.fromarray(img.astype('uint8')))
return imgs, target
# NOTICE: if used for mask, need to change
class Expand(object):
def __init__(self, mean):
self.mean = mean
def __call__(self, clip, target):
if rand.randint(2):
return clip,target
imgs = []
masks = []
image = np.asarray(clip[0]).astype('float32')
height, width, depth = image.shape
ratio = rand.uniform(1, 4)
left = rand.uniform(0, width*ratio - width)
top = rand.uniform(0, height*ratio - height)
for i in range(len(clip)):
image = np.asarray(clip[i]).astype('float32')
expand_image = np.zeros((int(height*ratio), int(width*ratio), depth),dtype=image.dtype)
expand_image[:, :, :] = self.mean
expand_image[int(top):int(top + height),int(left):int(left + width)] = image
imgs.append(Image.fromarray(expand_image.astype('uint8')))
expand_mask = torch.zeros((int(height*ratio), int(width*ratio)),dtype=torch.uint8)
expand_mask[int(top):int(top + height),int(left):int(left + width)] = target['masks'][i]
masks.append(expand_mask)
boxes = target['boxes'].numpy()
boxes[:, :2] += (int(left), int(top))
boxes[:, 2:] += (int(left), int(top))
target['boxes'] = torch.tensor(boxes)
target['masks']=torch.stack(masks)
return imgs, target
class RandomHorizontalFlip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, img, target):
if random.random() < self.p:
# NOTE: caption for 'left' and 'right' should also change
caption = target['caption']
target['caption'] = caption.replace('left', '@').replace('right', 'left').replace('@', 'right')
return hflip(img, target)
return img, target
class RandomVerticalFlip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, img, target):
if random.random() < self.p:
return vflip(img, target)
return img, target
class RandomResize(object):
def __init__(self, sizes, max_size=None):
assert isinstance(sizes, (list, tuple))
self.sizes = sizes
self.max_size = max_size
def __call__(self, img, target=None):
size = random.choice(self.sizes)
return resize(img, target, size, self.max_size)
class RandomPad(object):
def __init__(self, max_pad):
self.max_pad = max_pad
def __call__(self, img, target):
pad_x = random.randint(0, self.max_pad)
pad_y = random.randint(0, self.max_pad)
return pad(img, target, (pad_x, pad_y))
class RandomSelect(object):
"""
Randomly selects between transforms1 and transforms2,
with probability p for transforms1 and (1 - p) for transforms2
"""
def __init__(self, transforms1, transforms2, p=0.5):
self.transforms1 = transforms1
self.transforms2 = transforms2
self.p = p
def __call__(self, img, target):
if random.random() < self.p:
return self.transforms1(img, target)
return self.transforms2(img, target)
class ToTensor(object):
def __call__(self, clip, target):
img = []
for im in clip:
img.append(F.to_tensor(im))
return img, target
class RandomErasing(object):
def __init__(self, *args, **kwargs):
self.eraser = T.RandomErasing(*args, **kwargs)
def __call__(self, img, target):
return self.eraser(img), target
class Normalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, clip, target=None):
image = []
for im in clip:
image.append(F.normalize(im, mean=self.mean, std=self.std))
if target is None:
return image, None
target = target.copy()
h, w = image[0].shape[-2:]
if "boxes" in target:
boxes = target["boxes"]
boxes = box_xyxy_to_cxcywh(boxes)
boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
target["boxes"] = boxes
return image, target
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, image, target):
for t in self.transforms:
image, target = t(image, target)
return image, target
def __repr__(self):
format_string = self.__class__.__name__ + "("
for t in self.transforms:
format_string += "\n"
format_string += " {0}".format(t)
format_string += "\n)"
return format_string
|