File size: 11,598 Bytes
5c8ef86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
'''
Inference code for ReferFormer, on Ref-Youtube-VOS
Modified from DETR (https://github.com/facebookresearch/detr)
Ref-Davis17 does not support visualize
'''
import argparse
import json
import random
import time
from pathlib import Path
import numpy as np
import torch
import util.misc as utils
from models import build_model
import torchvision.transforms as T
import matplotlib.pyplot as plt
import os
import cv2
from PIL import Image, ImageDraw
import math
import torch.nn.functional as F
import json
import opts
from tqdm import tqdm
import multiprocessing as mp
import threading
from tools.colormap import colormap
# colormap
color_list = colormap()
color_list = color_list.astype('uint8').tolist()
# build transform
transform = T.Compose([
T.Resize(360),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def main(args):
args.dataset_file = "davis"
args.masks = True
args.batch_size == 1
print("Inference only supports for batch size = 1")
print(args)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
split = args.split
# save path
output_dir = args.output_dir
save_path_prefix = os.path.join(output_dir, split)
if not os.path.exists(save_path_prefix):
os.makedirs(save_path_prefix)
save_visualize_path_prefix = os.path.join(output_dir, split + '_images')
if args.visualize:
if not os.path.exists(save_visualize_path_prefix):
os.makedirs(save_visualize_path_prefix)
# load data
root = Path(args.davis_path) # data/ref-davis
img_folder = os.path.join(root, split, "JPEGImages")
meta_file = os.path.join(root, "meta_expressions", split, "meta_expressions.json")
with open(meta_file, "r") as f:
data = json.load(f)["videos"]
video_list = list(data.keys())
# create subprocess
thread_num = args.ngpu
global result_dict
result_dict = mp.Manager().dict()
processes = []
lock = threading.Lock()
video_num = len(video_list)
per_thread_video_num = math.ceil(float(video_num) / float(thread_num))
start_time = time.time()
print('Start inference')
for i in range(thread_num):
if i == thread_num - 1:
sub_video_list = video_list[i * per_thread_video_num:]
else:
sub_video_list = video_list[i * per_thread_video_num: (i + 1) * per_thread_video_num]
p = mp.Process(target=sub_processor, args=(lock, i, args, data,
save_path_prefix, save_visualize_path_prefix,
img_folder, sub_video_list))
p.start()
processes.append(p)
for p in processes:
p.join()
end_time = time.time()
total_time = end_time - start_time
result_dict = dict(result_dict)
num_all_frames_gpus = 0
for pid, num_all_frames in result_dict.items():
num_all_frames_gpus += num_all_frames
print("Total inference time: %.4f s" %(total_time))
def sub_processor(lock, pid, args, data, save_path_prefix, save_visualize_path_prefix, img_folder, video_list):
text = 'processor %d' % pid
with lock:
progress = tqdm(
total=len(video_list),
position=pid,
desc=text,
ncols=0
)
torch.cuda.set_device(pid)
# model
model, criterion, _ = build_model(args)
device = args.device
model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
if pid == 0:
print('number of params:', n_parameters)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
missing_keys, unexpected_keys = model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
unexpected_keys = [k for k in unexpected_keys if not (k.endswith('total_params') or k.endswith('total_ops'))]
if len(missing_keys) > 0:
print('Missing Keys: {}'.format(missing_keys))
if len(unexpected_keys) > 0:
print('Unexpected Keys: {}'.format(unexpected_keys))
else:
raise ValueError('Please specify the checkpoint for inference.')
# get palette
palette_img = os.path.join(args.davis_path, "valid/Annotations/blackswan/00000.png")
palette = Image.open(palette_img).getpalette()
# start inference
num_all_frames = 0
model.eval()
# 1. for each video
for video in video_list:
metas = []
expressions = data[video]["expressions"]
expression_list = list(expressions.keys())
num_expressions = len(expression_list)
video_len = len(data[video]["frames"])
# read all the anno meta
for i in range(num_expressions):
meta = {}
meta["video"] = video
meta["exp"] = expressions[expression_list[i]]["exp"]
meta["exp_id"] = expression_list[i] # start from 0
meta["frames"] = data[video]["frames"]
metas.append(meta)
meta = metas
# since there are 4 annotations
num_obj = num_expressions // 4
# 2. for each annotator
for anno_id in range(4): # 4 annotators
anno_logits = []
anno_masks = [] # [num_obj+1, video_len, h, w], +1 for background
for obj_id in range(num_obj):
i = obj_id * 4 + anno_id
video_name = meta[i]["video"]
exp = meta[i]["exp"]
exp_id = meta[i]["exp_id"]
frames = meta[i]["frames"]
video_len = len(frames)
# NOTE: the im2col_step for MSDeformAttention is set as 64
# so the max length for a clip is 64
# store the video pred results
all_pred_logits = []
all_pred_masks = []
# 3. for each clip
for clip_id in range(0, video_len, 36):
frames_ids = [x for x in range(video_len)]
clip_frames_ids = frames_ids[clip_id : clip_id + 36]
clip_len = len(clip_frames_ids)
# load the clip images
imgs = []
for t in clip_frames_ids:
frame = frames[t]
img_path = os.path.join(img_folder, video_name, frame + ".jpg")
img = Image.open(img_path).convert('RGB')
origin_w, origin_h = img.size
imgs.append(transform(img)) # list[Img]
imgs = torch.stack(imgs, dim=0).to(args.device) # [video_len, 3, H, W]
img_h, img_w = imgs.shape[-2:]
size = torch.as_tensor([int(img_h), int(img_w)]).to(args.device)
target = {"size": size}
with torch.no_grad():
outputs = model([imgs], [exp], [target])
pred_logits = outputs["pred_logits"][0] # [t, q, k]
pred_masks = outputs["pred_masks"][0] # [t, q, h, w]
# according to pred_logits, select the query index
pred_scores = pred_logits.sigmoid() # [t, q, k]
pred_scores = pred_scores.mean(0) # [q, K]
max_scores, _ = pred_scores.max(-1) # [q,]
_, max_ind = max_scores.max(-1) # [1,]
max_inds = max_ind.repeat(clip_len)
pred_masks = pred_masks[range(clip_len), max_inds, ...] # [t, h, w]
pred_masks = pred_masks.unsqueeze(0)
pred_masks = F.interpolate(pred_masks, size=(origin_h, origin_w), mode='bilinear', align_corners=False)
pred_masks = pred_masks.sigmoid()[0] # [t, h, w], NOTE: here mask is score
# store the clip results
pred_logits = pred_logits[range(clip_len), max_inds] # [t, k]
all_pred_logits.append(pred_logits)
all_pred_masks.append(pred_masks)
all_pred_logits = torch.cat(all_pred_logits, dim=0) # (video_len, K)
all_pred_masks = torch.cat(all_pred_masks, dim=0) # (video_len, h, w)
anno_logits.append(all_pred_logits)
anno_masks.append(all_pred_masks)
# handle a complete image (all objects of a annotator)
anno_logits = torch.stack(anno_logits) # [num_obj, video_len, k]
anno_masks = torch.stack(anno_masks) # [num_obj, video_len, h, w]
t, h, w = anno_masks.shape[-3:]
anno_masks[anno_masks < 0.5] = 0.0
background = 0.1 * torch.ones(1, t, h, w).to(args.device)
anno_masks = torch.cat([background, anno_masks], dim=0) # [num_obj+1, video_len, h, w]
out_masks = torch.argmax(anno_masks, dim=0) # int, the value indicate which object, [video_len, h, w]
out_masks = out_masks.detach().cpu().numpy().astype(np.uint8) # [video_len, h, w]
# save results
anno_save_path = os.path.join(save_path_prefix, f"anno_{anno_id}", video)
if not os.path.exists(anno_save_path):
os.makedirs(anno_save_path)
for f in range(out_masks.shape[0]):
img_E = Image.fromarray(out_masks[f])
img_E.putpalette(palette)
img_E.save(os.path.join(anno_save_path, '{:05d}.png'.format(f)))
with lock:
progress.update(1)
result_dict[str(pid)] = num_all_frames
with lock:
progress.close()
# Post-process functions
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b.cpu() * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
# Visualization functions
def draw_reference_points(draw, reference_points, img_size, color):
W, H = img_size
for i, ref_point in enumerate(reference_points):
init_x, init_y = ref_point
x, y = W * init_x, H * init_y
cur_color = color
draw.line((x-10, y, x+10, y), tuple(cur_color), width=4)
draw.line((x, y-10, x, y+10), tuple(cur_color), width=4)
def draw_sample_points(draw, sample_points, img_size, color_list):
alpha = 255
for i, samples in enumerate(sample_points):
for sample in samples:
x, y = sample
cur_color = color_list[i % len(color_list)][::-1]
cur_color += [alpha]
draw.ellipse((x-2, y-2, x+2, y+2),
fill=tuple(cur_color), outline=tuple(cur_color), width=1)
def vis_add_mask(img, mask, color):
origin_img = np.asarray(img.convert('RGB')).copy()
color = np.array(color)
mask = mask.reshape(mask.shape[0], mask.shape[1]).astype('uint8') # np
mask = mask > 0.5
origin_img[mask] = origin_img[mask] * 0.5 + color * 0.5
origin_img = Image.fromarray(origin_img)
return origin_img
if __name__ == '__main__':
parser = argparse.ArgumentParser('ReferFormer inference script', parents=[opts.get_args_parser()])
args = parser.parse_args()
main(args)
|