File size: 11,211 Bytes
5c8ef86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
from datasets import build_dataset
import argparse
import opts
import sys
from pathlib import Path
from os import path as osp
import io
import numpy as np
import pandas as pd
import regex as re
import json
import cv2
from PIL import Image
import torch
from torchvision.transforms import functional as F
from skimage import measure # (pip install scikit-image)
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle
import ipywidgets as widgets
from IPython.display import display, clear_output
parser = argparse.ArgumentParser('ReferFormer training and evaluation script', parents=[opts.get_args_parser()])
args = parser.parse_args()
#==================๋ฐ์ดํฐ ๋ถ๋ฌ์ค๊ธฐ===================
# ์ ์ฒด ๋ฐ์ดํฐ์
train_dataset = build_dataset('ytvos', image_set = 'train', args = args)
# ์ ์ฒด ๋ฐ์ดํฐ์
๋ฉํ๋ฐ์ดํฐ
metas = train_dataset.metas
# ํํฐ๋งํ ํ๋ ์๋ค
selected_frames_df = pd.read_json("selected_frames4.jsonl", lines = True)
#==================๋ง์คํฌ ๋ง๋๋ ํจ์๋ค===================
def prepare_mask_for_pil(mask_tensor):
mask_array = mask_tensor.squeeze(0).cpu().numpy()
mask_array = (mask_array * 255).astype(np.uint8)
mask_image = Image.fromarray(mask_array)
return mask_image
def create_sub_masks(mask_image):
width, height = mask_image.size
sub_masks = {}
for x in range(width):
for y in range(height):
# Get the RGB values of the pixel
pixel = mask_image.getpixel((x, y))
# If the pixel is not black...
if pixel != 0 :
# Check to see if we've created a sub-mask...
pixel_str = str(pixel)
sub_mask = sub_masks.get(pixel_str)
if sub_mask is None:
# Create a sub-mask (one bit per pixel) and add to the dictionary
# Note: we add 1 pixel of padding in each direction
# because the contours module doesn't handle cases
# where pixels bleed to the edge of the image
sub_masks[pixel_str] = Image.new('1', (width+2, height+2))
# Set the pixel value to 1 (default is 0), accounting for padding
sub_masks[pixel_str].putpixel((x+1, y+1), 1)
return sub_masks
#==================๋ง์คํฌ annotation ๋ง๋๋ ํจ์===================
def create_sub_mask_annotation(sub_mask, image_id, annotation_id, is_crowd):
# Find contours (boundary lines) around each sub-mask
# Note: there could be multiple contours if the object
# is partially occluded. (E.g. an elephant behind a tree)
contours = measure.find_contours(sub_mask, 0.5, positive_orientation='low')
segmentations = []
polygons = []
for contour in contours:
# Flip from (row, col) representation to (x, y)
# and subtract the padding pixel
for i in range(len(contour)):
row, col = contour[i]
contour[i] = (col - 1, row - 1)
# Make a polygon and simplify it
poly = Polygon(contour)
poly = poly.simplify(1.0, preserve_topology=False)
polygons.append(poly)
segmentation = np.array(poly.exterior.coords).ravel().tolist()
segmentations.append(segmentation)
# Combine the polygons to calculate the bounding box and area
multi_poly = MultiPolygon(polygons)
x, y, max_x, max_y = multi_poly.bounds
width = max_x - x
height = max_y - y
bbox = (x, y, width, height)
area = multi_poly.area
annotation = {
'segmentation': segmentations,
'iscrowd': is_crowd,
'image_id': image_id,
'id': annotation_id,
'bbox': bbox,
'area': area
}
return annotation
#==================์๊ฐํ ํจ์===================
# annotation dictionary as input
def showRef(annotation, image_dir, seg_box='seg'):
ax = plt.gca()
I = io.imread(osp.join(image_dir, annotation['file_name']))
ax.imshow(I)
for sid, sent in enumerate(annotation['sentences']):
print('%s. %s' % (sid + 1, sent))
if seg_box == 'seg':
polygons = []
color = []
c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0]
if type(annotation['segmentation'][0]) == list:
# polygon used for refcoco*
for seg in annotation['segmentation']:
poly = np.array(seg).reshape((int(len(seg) / 2), 2))
polygons.append(Polygon(poly))
color.append(c)
p = PatchCollection(polygons,
facecolors=(221/255, 160/255, 221/255), # ์ฐ๋ณด๋ผ์
linewidths=0,
alpha=0.4)
ax.add_collection(p)
p = PatchCollection(polygons,
facecolors='none',
edgecolors=color,
linewidths=2)
ax.add_collection(p)
# else:
# # mask used for refclef
# rle = annotation['segmentation']
# m = mask.decode(rle)
# img = np.ones((m.shape[0], m.shape[1], 3))
# color_mask = np.array([2.0, 166.0, 101.0]) / 255
# for i in range(3):
# img[:, :, i] = color_mask[i]
# ax.imshow(np.dstack((img, m * 0.5)))
# bounding box
elif seg_box == 'box':
bbox = annotation['bbox']
box_plot = Rectangle((bbox[0], bbox[1]),
bbox[2],
bbox[3],
fill=False,
edgecolor='green',
linewidth=3)
ax.add_patch(box_plot)
#==================๋ชจ๋ ์ข
ํฉํ ํจ์===================
def create_dict_from_selected_images(selected_frames_df):
image_id = 0
anno_id = 0
train_idx = 0
with open("/home/yejin/data/data/dataset/VRIS/mbench/ytvos/selected_instances2.jsonl", "w") as f:
for selected_idx in range(len(selected_frames_df)):
selected = selected_frames_df.loc[selected_idx]
selected_vid_id = selected['video']
selected_frame_id = selected['frame_id']
for obj_id in selected['objects'].keys():
selected_exp = selected['objects'][obj_id][0] #์บก์
selected_verb = selected['objects'][obj_id][1] #๋์ฌ
train_idx = next(
idx for idx, meta in enumerate(metas)
if meta['video'] == selected_vid_id
and meta['frame_id'] == selected_frame_id
and meta['obj_id'] == int(obj_id)
and meta['exp'] == selected_exp
)
train_frames, train_info = train_dataset[train_idx]
try:
valid_frame_loc = train_info['frames_idx'].tolist().index(selected_frame_id) #validํ frame์ด ์๋ index
except ValueError:
print(f"selected vid id: {selected_vid_id}, metas['frame_id']: {metas[train_idx]['frame_id']}, selected frame id: {selected_frame_id}, train_info['frames_idx']: {train_info['frames_idx'].tolist()}")
frame = train_frames[valid_frame_loc] #ํด๋น frame
frame = F.to_pil_image(frame)
image_file_name = f"{selected_vid_id}_{str(selected_frame_id).rjust(5, '0')}"
#์๋ frame ์ ์ฅํ๊ธฐ
save_dir = Path("/home/yejin/data/data/dataset/VRIS/mbench/ytvos/selected_frames")
#save_dir.mkdir(exist_ok=True)
save_path = save_dir / f"{image_file_name}.png"
#frame.save(save_path)
#์นดํ
๊ณ ๋ฆฌ
label = train_info['labels'][valid_frame_loc].item() #category id
category_name = metas[train_idx]['category'] #category name
#๋ฐ์ค ์ ๋ณด
box = train_info['boxes'][valid_frame_loc]
# Annotation tools ########################################################################
mask = train_info['masks'][valid_frame_loc]
# print(mask.shape)
# frame๊ณผ mask ๋ง๋์ง ํ์ธ๋ง
# plt.imshow(frame.permute(1, 2, 0))
# mask_color = np.zeros((*mask.shape, 3), dtype = np.uint8)
# mask_color[mask == 1] = [255, 0, 0]
# plt.imshow(mask_color, alpha = 0.5)
# plt.show()
mask_image = prepare_mask_for_pil(mask)
sub_masks = create_sub_masks(mask_image)
for color, sub_mask in sub_masks.items():
# print(f"Color: {color}, Sub-mask size: {sub_mask.size}")
sub_mask_array = np.array(sub_mask, dtype=np.uint8)
annotation = create_sub_mask_annotation(sub_mask_array, image_id, anno_id, is_crowd = 0)
anno_id += 1
image_id += 1
#ํ์ผ ๊ฒฝ๋ก ์ถ๊ฐ
annotation['file_name'] = f"{image_file_name}.png"
#๋ถํ์ํ ์ ๋ณด ์ง์ฐ๊ธฐ
annotation.pop('iscrowd', None)
annotation.pop('image_id', None)
annotation.pop('id', None)
valid = train_info['valid'][valid_frame_loc]
orig_size = train_info['orig_size']
size = train_info['size']
caption = metas[train_idx]['exp']
#filename, height, width ์ถ๊ฐ
#annotation['file_name'] = save_path
annotation['height'] = orig_size[0].item()
annotation['width'] = orig_size[1].item()
# category id,name, sentence dictionary ์ถ๊ฐ
annotation['label'] = label
annotation['category_name'] = category_name
sentence_dict = {
"tokens" : caption.split(' '),
"raw" : caption,
"sent" : re.sub('[^A-Za-z0-9\s]+', '', caption.lower())
}
annotation['sentences'] = sentence_dict
############################################################################################
# double check for segmentation annotation
# orig_img_np = draw_polygon_on_image(frame, annotation['segmentation'])
# plt.imshow(orig_img_np)
# plt.axis('off')
# plt.show()
# showRef(annotation, save_dir)
############################################################################################
# ์ต์ข
f.write(json.dumps(annotation) + "\n")
f.flush()
if __name__ == '__main__':
create_dict_from_selected_images(selected_frames_df) |