File size: 10,579 Bytes
3ec4928 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
"""
A2D-Sentences data loader
modified from https://github.com/mttr2021/MTTR/blob/main/datasets/a2d_sentences/a2d_sentences_dataset.py
"""
from pathlib import Path
import torch
from torchvision.io import read_video
import torchvision.transforms.functional as F
from torch.utils.data import Dataset
import datasets.transforms_video as T
import os
from PIL import Image
import json
import numpy as np
import random
import h5py
from pycocotools.mask import encode, area
def get_image_id(video_id, frame_idx, ref_instance_a2d_id):
image_id = f'v_{video_id}_f_{frame_idx}_i_{ref_instance_a2d_id}'
return image_id
class A2DSentencesDataset(Dataset):
"""
A Torch dataset for A2D-Sentences.
For more information check out: https://kgavrilyuk.github.io/publication/actor_action/ or the original paper at:
https://arxiv.org/abs/1803.07485
"""
def __init__(self, image_folder: Path, ann_file: Path, transforms, return_masks: bool,
num_frames: int, max_skip: int, subset):
super(A2DSentencesDataset, self).__init__()
dataset_path = str(image_folder)
self.mask_annotations_dir = os.path.join(dataset_path, 'text_annotations/a2d_annotation_with_instances')
self.videos_dir = os.path.join(dataset_path, 'Release/clips320H')
self.ann_file = ann_file
self.text_annotations = self.get_text_annotations()
self._transforms = transforms
self.return_masks = return_masks # not used
self.num_frames = num_frames
self.max_skip = max_skip
self.subset = subset
print(f'\n {subset} sample num: ', len(self.text_annotations))
print('\n')
def get_text_annotations(self):
with open(str(self.ann_file), 'r') as f:
text_annotations_by_frame = [tuple(a) for a in json.load(f)]
return text_annotations_by_frame
@staticmethod
def bounding_box(img):
rows = np.any(img, axis=1)
cols = np.any(img, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
return rmin, rmax, cmin, cmax # y1, y2, x1, x2
def __len__(self):
return len(self.text_annotations)
def __getitem__(self, idx):
instance_check = False
while not instance_check:
text_query, video_id, frame_idx, instance_id = self.text_annotations[idx]
text_query = " ".join(text_query.lower().split()) # clean up the text query
# read the source window frames:
video_frames, _, _ = read_video(os.path.join(self.videos_dir, f'{video_id}.mp4'), pts_unit='sec') # (T, H, W, C)
vid_len = len(video_frames)
# note that the original a2d dataset is 1 indexed, so we have to subtract 1 from frame_idx
frame_id = frame_idx - 1
if self.subset == 'train':
# get a window of window_size frames with frame frame_id in the middle.
num_frames = self.num_frames
# random sparse sample
sample_indx = [frame_id]
# local sample
sample_id_before = random.randint(1, 3)
sample_id_after = random.randint(1, 3)
local_indx = [max(0, frame_id - sample_id_before), min(vid_len - 1, frame_id + sample_id_after)]
sample_indx.extend(local_indx)
# global sampling
if num_frames > 3:
all_inds = list(range(vid_len))
global_inds = all_inds[:min(sample_indx)] + all_inds[max(sample_indx):]
global_n = num_frames - len(sample_indx)
if len(global_inds) > global_n:
select_id = random.sample(range(len(global_inds)), global_n)
for s_id in select_id:
sample_indx.append(global_inds[s_id])
elif vid_len >=global_n: # sample long range global frames
select_id = random.sample(range(vid_len), global_n)
for s_id in select_id:
sample_indx.append(all_inds[s_id])
else:
select_id = random.sample(range(vid_len), global_n - vid_len) + list(range(vid_len))
for s_id in select_id:
sample_indx.append(all_inds[s_id])
sample_indx.sort()
# find the valid frame index in sampled frame list, there is only one valid frame
valid_indices = sample_indx.index(frame_id)
elif self.subset == 'val':
start_idx, end_idx = frame_id - self.num_frames // 2, frame_id + (self.num_frames + 1) // 2
sample_indx = []
for i in range(start_idx, end_idx):
i = min(max(i, 0), len(video_frames)-1) # pad out of range indices with edge frames
sample_indx.append(i)
sample_indx.sort()
# find the valid frame index in sampled frame list, there is only one valid frame
valid_indices = sample_indx.index(frame_id)
# read frames
imgs, labels, boxes, masks, valid = [], [], [], [], []
for j in range(self.num_frames):
frame_indx = sample_indx[j]
img = F.to_pil_image(video_frames[frame_indx].permute(2, 0, 1))
imgs.append(img)
# read the instance mask
frame_annot_path = os.path.join(self.mask_annotations_dir, video_id, f'{frame_idx:05d}.h5')
f = h5py.File(frame_annot_path)
instances = list(f['instance'])
instance_idx = instances.index(instance_id) # existence was already validated during init
instance_masks = np.array(f['reMask'])
if len(instances) == 1:
instance_masks = instance_masks[np.newaxis, ...]
instance_masks = torch.tensor(instance_masks).transpose(1, 2)
mask_rles = [encode(mask) for mask in instance_masks.numpy()]
mask_areas = area(mask_rles).astype(float)
f.close()
# select the referred mask
label = torch.tensor(0, dtype=torch.long)
mask = instance_masks[instance_idx].numpy()
if (mask > 0).any():
y1, y2, x1, x2 = self.bounding_box(mask)
box = torch.tensor([x1, y1, x2, y2]).to(torch.float)
valid.append(1)
else: # some frame didn't contain the instance
box = torch.tensor([0, 0, 0, 0]).to(torch.float)
valid.append(0)
mask = torch.from_numpy(mask)
labels.append(label)
boxes.append(box)
masks.append(mask)
# transform
h, w = instance_masks.shape[-2:]
labels = torch.stack(labels, dim=0)
boxes = torch.stack(boxes, dim=0)
boxes[:, 0::2].clamp_(min=0, max=w)
boxes[:, 1::2].clamp_(min=0, max=h)
masks = torch.stack(masks, dim=0)
# there is only one valid frame
target = {
'frames_idx': torch.tensor(sample_indx), # [T,]
'valid_indices': torch.tensor([valid_indices]),
'labels': labels, # [1,]
'boxes': boxes, # [1, 4], xyxy
'masks': masks, # [1, H, W]
'valid': torch.tensor(valid), # [1,]
'caption': text_query,
'orig_size': torch.as_tensor([int(h), int(w)]),
'size': torch.as_tensor([int(h), int(w)]),
'image_id': get_image_id(video_id,frame_idx, instance_id)
}
# "boxes" normalize to [0, 1] and transform from xyxy to cxcywh in self._transform
if self._transforms:
imgs, target = self._transforms(imgs, target)
imgs = torch.stack(imgs, dim=0) # [T, 3, H, W]
else:
imgs = np.array(imgs)
imgs = torch.tensor(imgs.transpose(0, 3, 1, 2))
# FIXME: handle "valid", since some box may be removed due to random crop
if torch.any(target['valid'] == 1): # at leatst one instance
instance_check = True
else:
idx = random.randint(0, self.__len__() - 1)
return imgs, target
def make_coco_transforms(image_set, max_size=640):
normalize = T.Compose([
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
scales = [288, 320, 352, 392, 416, 448, 480, 512]
if image_set == 'train':
return T.Compose([
T.RandomHorizontalFlip(),
T.PhotometricDistort(),
T.RandomSelect(
T.Compose([
T.RandomResize(scales, max_size=max_size),
T.Check(),
]),
T.Compose([
T.RandomResize([400, 500, 600]),
T.RandomSizeCrop(384, 600),
T.RandomResize(scales, max_size=max_size),
T.Check(),
])
),
normalize,
])
# we do not use the 'val' set since the annotations are inaccessible
if image_set == 'val':
return T.Compose([
T.RandomResize([360], max_size=640),
normalize,
])
raise ValueError(f'unknown {image_set}')
def build(image_set, args):
root = Path(args.a2d_path)
assert root.exists(), f'provided A2D-Sentences path {root} does not exist'
PATHS = {
"train": (root, root / "a2d_sentences_single_frame_train_annotations.json"),
"val": (root, root / "a2d_sentences_single_frame_test_annotations.json"),
}
img_folder, ann_file = PATHS[image_set]
#dataset = A2DSentencesDataset(img_folder, ann_file, transforms=make_coco_transforms(image_set, max_size=args.max_size),
# return_masks=args.masks, num_frames=args.num_frames, max_skip=args.max_skip, subset=image_set)
dataset = A2DSentencesDataset(img_folder, ann_file, transforms=None,
return_masks=args.masks, num_frames=args.num_frames, max_skip=args.max_skip, subset=image_set)
return dataset |