File size: 12,356 Bytes
5c8ef86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import argparse
import datetime
import json
import random
import time
from pathlib import Path
from collections import namedtuple
from functools import partial
import os
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import util.misc as utils
import datasets.samplers as samplers
from datasets.coco_eval import CocoEvaluator
from datasets import build_dataset, get_coco_api_from_dataset
from engine import evaluate, train_one_epoch
from models import build_model
from models.postprocessors import build_postprocessors
import opts
def main(args):
# set environ
os.environ["MDETR_CPU_REDUCE"] = "1"
args.masks = True
assert args.dataset_file in ["refcoco", "refcoco+", "refcocog", "all"]
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, postprocessors = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
# lr_backbone_names = ["backbone.0", "text_encoder"]
def match_name_keywords(n, name_keywords):
out = False
for b in name_keywords:
if b in n:
out = True
break
return out
# for n, p in model_without_ddp.named_parameters():
# print(n)
param_dicts = [
{
"params":
[p for n, p in model_without_ddp.named_parameters()
if not match_name_keywords(n, args.lr_backbone_names) and not match_name_keywords(n, args.lr_text_encoder_names)
and not match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_backbone_names) and p.requires_grad],
"lr": args.lr_backbone,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_text_encoder_names) and p.requires_grad],
"lr": args.lr_text_encoder,
},
{
"params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
"lr": args.lr * args.lr_linear_proj_mult,
}
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, args.lr_drop)
# build train dataset
if args.dataset_file != "all":
dataset_train = build_dataset(args.dataset_file, image_set='train', args=args)
else:
dataset_names = ["refcoco", "refcoco+", "refcocog"]
dataset_train = torch.utils.data.ConcatDataset(
[build_dataset(name, image_set="train", args=args) for name in dataset_names]
)
print("\nTrain dataset sample number: ", len(dataset_train))
print("\n")
if args.distributed:
if args.cache_mode:
sampler_train = samplers.NodeDistributedSampler(dataset_train)
else:
sampler_train = samplers.DistributedSampler(dataset_train)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers,
pin_memory=True)
# build val datasets
Val_all = namedtuple(typename="val_data", field_names=["dataset_name", "dataloader", "base_ds", "evaluator_list"])
if args.dataset_file != "all":
dataset_names = [args.dataset_file]
else:
dataset_names = ["refcoco", "refcoco+", "refcocog"]
val_tuples = []
for name in dataset_names:
dataset_val = build_dataset(name, image_set="val", args=args)
sampler_val = (
samplers.DistributedSampler(dataset_val, shuffle=False) if args.distributed else torch.utils.data.SequentialSampler(dataset_val)
)
data_loader_val = DataLoader(
dataset_val,
args.batch_size,
sampler=sampler_val,
drop_last=False,
collate_fn=utils.collate_fn,
num_workers=args.num_workers,
)
base_ds = get_coco_api_from_dataset(dataset_val)
val_tuples.append(Val_all(dataset_name=name, dataloader=data_loader_val, base_ds=base_ds, evaluator_list=None))
# build evaluator list for dataset_val
def build_evaluator_list(base_ds, dataset_name):
"""Helper function to build the list of evaluators for a given dataset"""
evaluator_list = []
iou_types = ["bbox"]
if args.masks:
iou_types.append("segm")
evaluator_list.append(CocoEvaluator(base_ds, tuple(iou_types), useCats=False))
# TODO: currently ont support RefExpEvaluator (memory error)
return evaluator_list
output_dir = Path(args.output_dir)
if args.resume:
print("Resume from {}".format(args.resume))
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
missing_keys, unexpected_keys = model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
unexpected_keys = [k for k in unexpected_keys if not (k.endswith('total_params') or k.endswith('total_ops'))]
if len(missing_keys) > 0:
print('Missing Keys: {}'.format(missing_keys))
if len(unexpected_keys) > 0:
print('Unexpected Keys: {}'.format(unexpected_keys))
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
import copy
p_groups = copy.deepcopy(optimizer.param_groups)
optimizer.load_state_dict(checkpoint['optimizer'])
for pg, pg_old in zip(optimizer.param_groups, p_groups):
pg['lr'] = pg_old['lr']
pg['initial_lr'] = pg_old['initial_lr']
print(optimizer.param_groups)
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
# todo: this is a hack for doing experiment that resume from checkpoint and also modify lr scheduler (e.g., decrease lr in advance).
args.override_resumed_lr_drop = True
if args.override_resumed_lr_drop:
print('Warning: (hack) args.override_resumed_lr_drop is set to True, so args.lr_drop would override lr_drop in resumed lr_scheduler.')
lr_scheduler.step_size = args.lr_drop
lr_scheduler.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups))
lr_scheduler.step(lr_scheduler.last_epoch)
args.start_epoch = checkpoint['epoch'] + 1
if not args.eval:
test_stats = {}
for i, item in enumerate(val_tuples):
evaluator_list = build_evaluator_list(item.base_ds, item.dataset_name)
postprocessors = build_postprocessors(args, item.dataset_name)
item = item._replace(evaluator_list=evaluator_list)
print(f"Evaluating {item.dataset_name}")
curr_test_stats = evaluate(
model=model,
criterion=criterion,
postprocessors=postprocessors,
data_loader=item.dataloader,
evaluator_list=item.evaluator_list,
device=device,
args=args,
)
test_stats.update({item.dataset_name + "_" + k: v for k, v in curr_test_stats.items()})
log_stats = {
**{f"test_{k}": v for k, v in test_stats.items()},
"n_parameters": n_parameters,
}
print(log_stats)
if args.eval:
print("Evaluating......")
test_stats = {}
for i, item in enumerate(val_tuples):
evaluator_list = build_evaluator_list(item.base_ds, item.dataset_name)
postprocessors = build_postprocessors(args, item.dataset_name)
item = item._replace(evaluator_list=evaluator_list)
print(f"Evaluating {item.dataset_name}")
curr_test_stats = evaluate(
model=model,
criterion=criterion,
postprocessors=postprocessors,
data_loader=item.dataloader,
evaluator_list=item.evaluator_list,
device=device,
args=args,
)
test_stats.update({item.dataset_name + "_" + k: v for k, v in curr_test_stats.items()})
log_stats = {
**{f"test_{k}": v for k, v in test_stats.items()},
"n_parameters": n_parameters,
}
print(log_stats)
return
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch,
args.clip_max_norm)
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every epochs
# if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 1 == 0:
if (epoch + 1) % 1 == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
test_stats = {}
for i, item in enumerate(val_tuples):
evaluator_list = build_evaluator_list(item.base_ds, item.dataset_name)
postprocessors = build_postprocessors(args, item.dataset_name)
item = item._replace(evaluator_list=evaluator_list)
print(f"Evaluating {item.dataset_name}")
curr_test_stats = evaluate(
model=model,
criterion=criterion,
postprocessors=postprocessors,
data_loader=item.dataloader,
evaluator_list=item.evaluator_list,
device=device,
args=args,
)
test_stats.update({item.dataset_name + "_" + k: v for k, v in curr_test_stats.items()})
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('ReferFormer pretrain training and evaluation script', parents=[opts.get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)
|