File size: 20,614 Bytes
9b855a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
"""
Segmentaion Part 
Modified from DETR (https://github.com/facebookresearch/detr)
"""
from collections import defaultdict
from typing import List, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from PIL import Image

from einops import rearrange, repeat

try:
    from panopticapi.utils import id2rgb, rgb2id
except ImportError:
    pass

import fvcore.nn.weight_init as weight_init

from .position_encoding import PositionEmbeddingSine1D

BN_MOMENTUM = 0.1

def get_norm(norm, out_channels): # only support GN or LN
    """
    Args:
        norm (str or callable): either one of BN, SyncBN, FrozenBN, GN;
            or a callable that takes a channel number and returns
            the normalization layer as a nn.Module.

    Returns:
        nn.Module or None: the normalization layer
    """
    if norm is None:
        return None
    if isinstance(norm, str):
        if len(norm) == 0:
            return None
        norm = {
            "GN": lambda channels: nn.GroupNorm(8, channels),
            "LN": lambda channels: nn.LayerNorm(channels)
        }[norm]
    return norm(out_channels)

class Conv2d(torch.nn.Conv2d):
    """
    A wrapper around :class:`torch.nn.Conv2d` to support empty inputs and more features.
    """

    def __init__(self, *args, **kwargs):
        """
        Extra keyword arguments supported in addition to those in `torch.nn.Conv2d`:

        Args:
            norm (nn.Module, optional): a normalization layer
            activation (callable(Tensor) -> Tensor): a callable activation function

        It assumes that norm layer is used before activation.
        """
        norm = kwargs.pop("norm", None)
        activation = kwargs.pop("activation", None)
        super().__init__(*args, **kwargs)

        self.norm = norm
        self.activation = activation

    def forward(self, x):
        # torchscript does not support SyncBatchNorm yet
        # https://github.com/pytorch/pytorch/issues/40507
        # and we skip these codes in torchscript since:
        # 1. currently we only support torchscript in evaluation mode
        # 2. features needed by exporting module to torchscript are added in PyTorch 1.6 or
        # later version, `Conv2d` in these PyTorch versions has already supported empty inputs.
        if not torch.jit.is_scripting():
            if x.numel() == 0 and self.training:
                # https://github.com/pytorch/pytorch/issues/12013
                assert not isinstance(
                    self.norm, torch.nn.SyncBatchNorm
                ), "SyncBatchNorm does not support empty inputs!"

        x = F.conv2d(
            x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups
        )
        if self.norm is not None:
            x = self.norm(x)
        if self.activation is not None:
            x = self.activation(x)
        return x

# FPN structure
class CrossModalFPNDecoder(nn.Module):
    def __init__(self, feature_channels: List, conv_dim: int, mask_dim: int, dim_feedforward: int = 2048, norm=None):
        """
        Args:
            feature_channels: list of fpn feature channel numbers.
            conv_dim: number of output channels for the intermediate conv layers.
            mask_dim: number of output channels for the final conv layer.
            dim_feedforward: number of vision-language fusion module ffn channel numbers.
            norm (str or callable): normalization for all conv layers
        """
        super().__init__()

        self.feature_channels = feature_channels

        lateral_convs = []
        output_convs = []

        use_bias = norm == ""
        for idx, in_channels in enumerate(feature_channels):
            # in_channels: 4x -> 32x
            lateral_norm = get_norm(norm, conv_dim)
            output_norm = get_norm(norm, conv_dim)

            lateral_conv = Conv2d(
                    in_channels, conv_dim, kernel_size=1, bias=use_bias, norm=lateral_norm
                )
            output_conv = Conv2d(
                conv_dim,
                conv_dim,
                kernel_size=3,
                stride=1,
                padding=1,
                bias=use_bias,
                norm=output_norm,
                activation=F.relu,
            )
            weight_init.c2_xavier_fill(lateral_conv)
            weight_init.c2_xavier_fill(output_conv)
            stage = idx+1
            self.add_module("adapter_{}".format(stage), lateral_conv)
            self.add_module("layer_{}".format(stage), output_conv)

            lateral_convs.append(lateral_conv)
            output_convs.append(output_conv)
            
        # Place convs into top-down order (from low to high resolution)
        # to make the top-down computation in forward clearer.
        self.lateral_convs = lateral_convs[::-1]
        self.output_convs = output_convs[::-1]

        self.mask_dim = mask_dim
        self.mask_features = Conv2d(
            conv_dim,
            mask_dim,
            kernel_size=3,
            stride=1,
            padding=1,
        )
        weight_init.c2_xavier_fill(self.mask_features)

        # vision-language cross-modal fusion
        self.text_pos = PositionEmbeddingSine1D(conv_dim, normalize=True)
        sr_ratios = [8, 4, 2, 1]
        cross_attns = []
        for idx in range(len(feature_channels)): # res2 -> res5
            cross_attn = VisionLanguageBlock(conv_dim, dim_feedforward=dim_feedforward,
                                             nhead=8, sr_ratio=sr_ratios[idx])
            for p in cross_attn.parameters():
                if p.dim() > 1:
                    nn.init.xavier_uniform_(p)
            stage = int(idx + 1)
            self.add_module("cross_attn_{}".format(stage), cross_attn)
            cross_attns.append(cross_attn)
        # place cross-attn in top-down order (from low to high resolution)
        self.cross_attns = cross_attns[::-1]


    def forward_features(self, features, text_features, poses, memory, nf):
        # nf: num_frames
        text_pos = self.text_pos(text_features).permute(2, 0, 1)   # [length, batch_size, c]  
        text_features, text_masks = text_features.decompose()      
        text_features = text_features.permute(1, 0, 2)   

        for idx, (mem, f, pos) in enumerate(zip(memory[::-1], features[1:][::-1], poses[1:][::-1])): # 32x -> 8x
            lateral_conv = self.lateral_convs[idx]
            output_conv = self.output_convs[idx]
            cross_attn = self.cross_attns[idx]
            
            _, x_mask = f.decompose()
            n, c, h, w = pos.shape
            b = n // nf
            t = nf

            # NOTE: here the (h, w) is the size for current fpn layer
            vision_features = lateral_conv(mem)  # [b*t, c, h, w]
            vision_features = rearrange(vision_features, '(b t) c h w -> (t h w) b c', b=b, t=t)
            vision_pos = rearrange(pos, '(b t) c h w -> (t h w) b c', b=b, t=t)
            vision_masks = rearrange(x_mask, '(b t) h w -> b (t h w)', b=b, t=t)

            cur_fpn = cross_attn(tgt=vision_features,
                                 memory=text_features,
                                 t=t, h=h, w=w,
                                 tgt_key_padding_mask=vision_masks,
                                 memory_key_padding_mask=text_masks,
                                 pos=text_pos,
                                 query_pos=vision_pos
            ) # [t*h*w, b, c]
            cur_fpn = rearrange(cur_fpn, '(t h w) b c -> (b t) c h w', t=t, h=h, w=w)

            # upsample
            if idx == 0: # top layer
                y = output_conv(cur_fpn)
            else:
                # Following FPN implementation, we use nearest upsampling here
                y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest")
                y = output_conv(y)
        
        # 4x level
        lateral_conv = self.lateral_convs[-1]
        output_conv = self.output_convs[-1]
        cross_attn = self.cross_attns[-1]
        
        x, x_mask = features[0].decompose()
        pos = poses[0]
        n, c, h, w = pos.shape
        b = n // nf
        t = nf

        vision_features = lateral_conv(x)  # [b*t, c, h, w]
        vision_features = rearrange(vision_features, '(b t) c h w -> (t h w) b c', b=b, t=t)
        vision_pos = rearrange(pos, '(b t) c h w -> (t h w) b c', b=b, t=t)
        vision_masks = rearrange(x_mask, '(b t) h w -> b (t h w)', b=b, t=t)

        cur_fpn = cross_attn(tgt=vision_features,
                             memory=text_features,
                             t=t, h=h, w=w,
                             tgt_key_padding_mask=vision_masks,
                             memory_key_padding_mask=text_masks,
                             pos=text_pos,
                             query_pos=vision_pos
        ) # [t*h*w, b, c]
        cur_fpn = rearrange(cur_fpn, '(t h w) b c -> (b t) c h w', t=t, h=h, w=w)
        # Following FPN implementation, we use nearest upsampling here
        y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest")
        y = output_conv(y)
        return y   # [b*t, c, h, w], the spatial stride is 4x

    def forward(self, features, text_features, pos, memory, nf):
        """The forward function receives the vision and language features, 
            and outputs the mask features with the spatial stride of 4x.

        Args:
            features (list[NestedTensor]): backbone features (vision), length is number of FPN layers
                tensors: [b*t, ci, hi, wi], mask: [b*t, hi, wi]
            text_features (NestedTensor): text features (language)
                tensors: [b, length, c], mask: [b, length]
            pos (list[Tensor]): position encoding of vision features, length is number of FPN layers
                tensors: [b*t, c, hi, wi]
            memory (list[Tensor]): features from encoder output. from 8x -> 32x
            NOTE: the layer orders of both features and pos are res2 -> res5

        Returns:
            mask_features (Tensor): [b*t, mask_dim, h, w], with the spatial stride of 4x.
        """
        y = self.forward_features(features, text_features, pos, memory, nf)
        return self.mask_features(y)


class VisionLanguageBlock(nn.Module):
    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
                 activation="relu", normalize_before=False, sr_ratio=1):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

        # for downsample
        self.sr_ratio = sr_ratio

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self, tgt, memory, t, h, w,
                     tgt_key_padding_mask: Optional[Tensor] = None,
                     memory_key_padding_mask: Optional[Tensor] = None,
                     pos: Optional[Tensor] = None,
                     query_pos: Optional[Tensor] = None):
        b = tgt.size(1)
        # self attn
        q = k = self.with_pos_embed(tgt, query_pos)
        if self.sr_ratio > 1: # downsample
            q = rearrange(q, '(t h w) b c -> (b t) c h w', t=t, h=h, w=w)
            k = rearrange(k, '(t h w) b c -> (b t) c h w', t=t, h=h, w=w)
            v = rearrange(tgt, '(t h w) b c -> (b t) c h w', t=t, h=h, w=w)
            # downsample
            new_h = int(h * 1./self.sr_ratio)
            new_w = int(w * 1./self.sr_ratio)
            size = (new_h, new_w)
            q = F.interpolate(q, size=size, mode='nearest')
            k = F.interpolate(k, size=size, mode='nearest')
            v = F.interpolate(v, size=size, mode='nearest')
            # shape for transformer
            q = rearrange(q, '(b t) c h w -> (t h w) b c', t=t)
            k = rearrange(k, '(b t) c h w -> (t h w) b c', t=t)
            v = rearrange(v, '(b t) c h w -> (t h w) b c', t=t)
            # downsample mask
            tgt_key_padding_mask = tgt_key_padding_mask.reshape(b*t, h, w)
            tgt_key_padding_mask = F.interpolate(tgt_key_padding_mask[None].float(), size=(new_h, new_w), mode='nearest').bool()[0] 
            tgt_key_padding_mask = tgt_key_padding_mask.reshape(b, t, new_h, new_w).flatten(1)
        else:
            v = tgt
        tgt2 = self.self_attn(q, k, value=v, attn_mask=None,
                              key_padding_mask=tgt_key_padding_mask)[0] # [H*W, B*T, C]
        if self.sr_ratio > 1:
            tgt2 = rearrange(tgt2, '(t h w) b c -> (b t) c h w', t=t, h=new_h, w=new_w)
            size = (h, w)  # recover to origin size
            tgt2 = F.interpolate(tgt2, size=size, mode='bilinear', align_corners=False) # [B*T, C, H, W]
            tgt2 = rearrange(tgt2, '(b t) c h w -> (t h w) b c', t=t)
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)

        # cross attn
        tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
                                   key=self.with_pos_embed(memory, pos),
                                   value=memory, attn_mask=None,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)

        # ffn
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        return tgt

    def forward_pre(self, tgt, memory, t, h, w,
                    tgt_key_padding_mask: Optional[Tensor] = None,
                    memory_key_padding_mask: Optional[Tensor] = None,
                    pos: Optional[Tensor] = None,
                    query_pos: Optional[Tensor] = None):
        b = tgt.size(1)
        # self attn
        tgt2 = self.norm1(tgt)
        q = k = self.with_pos_embed(tgt2, query_pos)
        if self.sr_ratio > 1: # downsample
            q = rearrange(q, '(t h w) b c -> (b t) c h w', t=t, h=h, w=w)
            k = rearrange(k, '(t h w) b c -> (b t) c h w', t=t, h=h, w=w)
            v = rearrange(tgt, '(t h w) b c -> (b t) c h w', t=t, h=h, w=w)
            # downsample
            new_h = int(h * 1./self.sr_ratio)
            new_w = int(w * 1./self.sr_ratio)
            size = (new_h, new_w)
            q = F.interpolate(q, size=size, mode='nearest')
            k = F.interpolate(k, size=size, mode='nearest')
            v = F.interpolate(v, size=size, mode='nearest')
            # shape for transformer
            q = rearrange(q, '(b t) c h w -> (t h w) b c', t=t)
            k = rearrange(k, '(b t) c h w -> (t h w) b c', t=t)
            v = rearrange(v, '(b t) c h w -> (t h w) b c', t=t)
            # downsample mask
            tgt_key_padding_mask = tgt_key_padding_mask.reshape(b*t, h, w)
            tgt_key_padding_mask = F.interpolate(tgt_key_padding_mask[None].float(), size=(new_h, new_w), mode='nearest').bool()[0] 
            tgt_key_padding_mask = tgt_key_padding_mask.reshape(b, t, new_h, new_w).flatten(1)
        else:
            v = tgt2
        tgt2 = self.self_attn(q, k, value=v, attn_mask=None,
                              key_padding_mask=tgt_key_padding_mask)[0] # [T*H*W, B, C]
        if self.sr_ratio > 1:
            tgt2 = rearrange(tgt2, '(t h w) b c -> (b t) c h w', t=t, h=new_h, w=new_w)
            size = (h, w)  # recover to origin size
            tgt2 = F.interpolate(tgt2, size=size, mode='bilinear', align_corners=False) # [B*T, C, H, W]
            tgt2 = rearrange(tgt2, '(b t) c h w -> (t h w) b c', t=t)
        tgt = tgt + self.dropout1(tgt2)

        # cross attn
        tgt2 = self.norm2(tgt)
        tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
                                   key=self.with_pos_embed(memory, pos),
                                   value=memory, attn_mask=None,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout2(tgt2)

        # ffn
        tgt2 = self.norm3(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
        tgt = tgt + self.dropout3(tgt2)
        return tgt

    def forward(self, tgt, memory, t, h, w,
                tgt_key_padding_mask: Optional[Tensor] = None,
                memory_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None,
                query_pos: Optional[Tensor] = None):
        if self.normalize_before:
            return self.forward_pre(tgt, memory, t, h, w,
                                    tgt_key_padding_mask, memory_key_padding_mask, 
                                    pos, query_pos)
        return self.forward_post(tgt, memory, t, h, w,
                                 tgt_key_padding_mask, memory_key_padding_mask, 
                                 pos, query_pos)



class VisionLanguageFusionModule(nn.Module):
    def __init__(self, d_model, nhead, dropout=0.0):
        super().__init__()
        self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward(self, tgt, memory,
                memory_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None,
                query_pos: Optional[Tensor] = None):
        tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
                                   key=self.with_pos_embed(memory, pos),
                                   value=memory, attn_mask=None,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt * tgt2
        return tgt


def dice_loss(inputs, targets, num_boxes):
    """
    Compute the DICE loss, similar to generalized IOU for masks
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
    """
    inputs = inputs.sigmoid()
    inputs = inputs.flatten(1)
    numerator = 2 * (inputs * targets).sum(1)
    denominator = inputs.sum(-1) + targets.sum(-1)
    loss = 1 - (numerator + 1) / (denominator + 1)
    return loss.sum() / num_boxes


def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2):
    """
    Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
        alpha: (optional) Weighting factor in range (0,1) to balance
                positive vs negative examples. Default = -1 (no weighting).
        gamma: Exponent of the modulating factor (1 - p_t) to
               balance easy vs hard examples.
    Returns:
        Loss tensor
    """
    prob = inputs.sigmoid()
    ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
    p_t = prob * targets + (1 - prob) * (1 - targets)
    loss = ce_loss * ((1 - p_t) ** gamma)

    if alpha >= 0:
        alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
        loss = alpha_t * loss

    return loss.mean(1).sum() / num_boxes


def _get_activation_fn(activation):
    """Return an activation function given a string"""
    if activation == "relu":
        return F.relu
    if activation == "gelu":
        return F.gelu
    if activation == "glu":
        return F.glu
    raise RuntimeError(F"activation should be relu/gelu, not {activation}.")