File size: 4,954 Bytes
5c8ef86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import argparse\n",
    "import sys\n",
    "import opts\n",
    "import matplotlib.pyplot as plt\n",
    "import matplotlib.patches as patches\n",
    "import textwrap\n",
    "\n",
    "from PIL import Image, ImageDraw\n",
    "import json\n",
    "import numpy as np\n",
    "from mbench.ytvos_ref import build as build_ytvos_ref"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [],
   "source": [
    "img_folder = 'data/ref-youtube-vos/train'\n",
    "text_colors = ['red', 'blue']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('mbench/result_revised50.json') as file:\n",
    "    data = json.load(file)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [],
   "source": [
    "def bounding_box(img):\n",
    "    rows = np.any(img, axis=1)\n",
    "    cols = np.any(img, axis=0)\n",
    "    rmin, rmax = np.where(rows)[0][[0, -1]]\n",
    "    cmin, cmax = np.where(cols)[0][[0, -1]]\n",
    "    return rmin, rmax, cmin, cmax # y1, y2, x1, x2 "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 97,
   "metadata": {},
   "outputs": [],
   "source": [
    "def showImageRef(vid_id):\n",
    "    vid_data = data[vid_id]\n",
    "    cats = list(vid_data.keys())\n",
    "\n",
    "    for cat in cats:\n",
    "        cat_data = vid_data[cat]\n",
    "        frames = list(cat_data.keys())\n",
    "        \n",
    "        for frame in frames:\n",
    "            frame_data = cat_data[frame]\n",
    "            \n",
    "            img_path = os.path.join(img_folder, 'JPEGImages', vid_id, frame + '.jpg')\n",
    "            mask_path = os.path.join(img_folder, 'Annotations', vid_id, frame + '.png')\n",
    "            img = Image.open(img_path).convert('RGB')\n",
    "            mask = Image.open(mask_path).convert('P')\n",
    "            mask = np.array(mask)\n",
    "            \n",
    "            if frame_data:\n",
    "                obj_ids = list(frame_data.keys())\n",
    "                obj_nums = len(obj_ids)\n",
    "\n",
    "                fig, axes = plt.subplots(1, obj_nums, figsize=(16, obj_nums))\n",
    "\n",
    "                for i in range(len(obj_ids)):\n",
    "                    obj_id = obj_ids[i]\n",
    "                    obj_data = frame_data[obj_id]\n",
    "                    if obj_data:\n",
    "                        ref_exp = obj_data['ref_exp']\n",
    "                        isValid = obj_data['isValid']\n",
    "\n",
    "                        obj_mask = (mask == int(obj_id)).astype(np.float32)\n",
    "                        if (obj_mask > 0).any():\n",
    "                            y1, y2, x1, x2 = bounding_box(obj_mask)\n",
    "                            box = np.array([x1, y1, x2, y2])\n",
    "                        else:\n",
    "                            box = np.array([0, 0, 0, 0])\n",
    "                        \n",
    "                        if obj_nums == 1:\n",
    "                            ax = axes\n",
    "                        else:\n",
    "                            ax = axes[i]\n",
    "                        ax.imshow(img)\n",
    "                        width, height = box[2] - box[0], box[3] - box[1]\n",
    "                        rect = patches.Rectangle((x1, y1), width, height, linewidth=2, edgecolor='red', facecolor='none')\n",
    "                        ax.add_patch(rect)\n",
    "\n",
    "                        wrapped_text = \"\\n\".join(textwrap.wrap(ref_exp, width=30))\n",
    "                        ax.annotate(wrapped_text, xy=(0.5, -1.5), xycoords=\"axes fraction\", ha = \"center\", color=text_colors[isValid])\n",
    "                \n",
    "                plt.suptitle(f\"video: {vid_id} - cat: {cat} - frame: {frame}\")\n",
    "                plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 142,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "04667fabaa\n"
     ]
    }
   ],
   "source": [
    "vid_id = list(data.keys())[49]\n",
    "print(vid_id)\n",
    "showImageRef(vid_id)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "referformer",
   "language": "python",
   "name": "referformer"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}