File size: 1,253 Bytes
5c8ef86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#!/bin/bash
#SBATCH --job-name=caption-test
#SBATCH --partition=a4000
#SBATCH --gres=gpu:1  # GPU ���
#SBATCH --time=10-04:30:00  # �ִ� ���� �ð� (10�� 4�ð� 30��)
#SBATCH --mem=10G  # �޸� (10GB)
#SBATCH --cpus-per-task=4  # CPU �ھ� ��
#SBATCH --output=logs/gpt_ref-ytvos_numbered_cy_sanity.log  # ��� �α� ���� ���

# ȯ�� ����
ml purge
ml load cuda/11.8
eval "$(conda shell.bash hook)"
conda activate risall

# Python ��ũ��Ʈ ����
python ./mbench/gpt_ref-ytvos_numbered_cy_sanity_2.py --save_caption_path "mbench/numbered_captions_gpt-4o_nomask_randcap2.json" \
                                           --save_valid_obj_ids_path "mbench/numbered_valid_obj_ids_gpt-4o_nomask_randcap2.json"




# #!/bin/bash 
# #SBATCH --job-name=jupyter
# #SBATCH --partition=a4000 # ????? ???? ????: a6000 or a100
# #SBATCH --gres=gpu:0 # Use 1 GPU 
# #SBATCH --time=10-04:30:00 # d-hh:mm:ss ????, ???? job?? max time limit ???? 
# #SBATCH --mem=3G # cpu memory size 
# #SBATCH --cpus-per-task=3 # cpu ???? 
# #SBATCH --output=jptr_chaeyun.txt # ?????? ???? ??? std output?? ?????? ???? ??? 

# ml purge
# ml load cuda/11.8
# eval "$(conda shell.bash hook)"
# conda activate risall

# # python datagen.py
# srun jupyter notebook --no-browser --port=5727