File size: 30,701 Bytes
5c8ef86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import time

from os import path as osp
from io import BytesIO
import random

from mbench.ytvos_ref import build as build_ytvos_ref
import argparse
import opts

import sys
from pathlib import Path
import os
from os import path as osp
import skimage
from io import BytesIO

import numpy as np
import pandas as pd
import regex as re
import json

import cv2
from PIL import Image, ImageDraw
import torch
from torchvision.transforms import functional as F

from skimage import measure                        # (pip install scikit-image)
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)

import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle
import textwrap


import ipywidgets as widgets
from IPython.display import display, clear_output

from openai import OpenAI
import base64
import json

def number_objects_and_encode(idx, color_mask=False):
    encoded_frames = {}
    contoured_frames = {}  # New dictionary for original images
    vid_cat_cnts = {}

    vid_meta = metas[idx]
    vid_data = train_dataset[idx]
    vid_id = vid_meta['video']
    frame_indx = vid_meta['sample_indx']
    cat_names = set(vid_meta['obj_id_cat'].values())
    imgs = vid_data[0]
    
    for cat in cat_names:
        cat_frames = []
        contour_frames = []
        frame_cat_cnts = {}

        for i in range(imgs.size(0)):
            frame_name = frame_indx[i]
            frame = np.copy(imgs[i].permute(1, 2, 0).numpy())  
            frame_for_contour = np.copy(imgs[i].permute(1, 2, 0).numpy()) 

            frame_data = vid_data[2][frame_name]
            obj_ids = list(frame_data.keys())

            cat_cnt = 0

            for j in range(len(obj_ids)):
                obj_id = obj_ids[j]
                obj_data = frame_data[obj_id]
                obj_bbox = obj_data['bbox']
                obj_valid = obj_data['valid']
                obj_mask = obj_data['mask'].numpy().astype(np.uint8)
                obj_cat = obj_data['category_name']

                if obj_cat == cat and obj_valid:
                    cat_cnt += 1
                    
                    if color_mask == False:
                        contours, _ = cv2.findContours(obj_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
                        cv2.drawContours(frame, contours, -1, colors[j], 3)
                        for i, contour in enumerate(contours):
                            moments = cv2.moments(contour)
                            if moments["m00"] != 0:  
                                cx = int(moments["m10"] / moments["m00"])
                                cy = int(moments["m01"] / moments["m00"])
                            else:
                                cx, cy = contour[0][0] 
                                
                            font = cv2.FONT_HERSHEY_SIMPLEX
                            text = obj_id
                            text_size = cv2.getTextSize(text, font, 1, 2)[0]
                            text_w, text_h = text_size
                            
                            cv2.rectangle(frame, (cx - text_w // 2 - 5, cy - text_h // 2 - 5),
                                        (cx + text_w // 2 + 5, cy + text_h // 2 + 5), (0, 0, 0), -1)
                            
                            cv2.putText(frame, text, (cx - text_w // 2, cy + text_h // 2),
                                        font, 1, (255, 255, 255), 2)

                    else:
                        alpha = 0.08

                        colored_obj_mask = np.zeros_like(frame)  
                        colored_obj_mask[obj_mask == 1] = colors[j]
                        frame[obj_mask == 1] = (
                            (1 - alpha) * frame[obj_mask == 1]
                            + alpha * colored_obj_mask[obj_mask == 1]
                        )


                        contours, _ = cv2.findContours(obj_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
                        cv2.drawContours(frame, contours, -1, colors[j], 2)
                        cv2.drawContours(frame_for_contour, contours, -1, colors[j], 2)
                        
                        if len(contours) > 0:
                            largest_contour = max(contours, key=cv2.contourArea)
                            M = cv2.moments(largest_contour)
                            if M["m00"] != 0:  
                                center_x = int(M["m10"] / M["m00"])
                                center_y = int(M["m01"] / M["m00"])
                            else:
                                center_x, center_y = 0, 0

                        font = cv2.FONT_HERSHEY_SIMPLEX
                        text = obj_id

                        font_scale = 0.9  
                        text_size = cv2.getTextSize(text, font, font_scale, 2)[0]                        
                        text_x = center_x - text_size[0] // 1
                        text_y = center_y

                        rect_start = (text_x - 5, text_y - text_size[1] - 5) 
                        rect_end = (text_x + text_size[0] + 5, text_y)

                        cv2.rectangle(frame, rect_start, rect_end, (0, 0, 0), -1)
                        cv2.putText(frame, text, (text_x, text_y), font, 1, (255, 255, 255), 2)

            # plt.figure(figsize=(12, 8))
            # plt.imshow(frame)
            # plt.title(f"frame {frame_name}")
            # plt.tight_layout()
            # plt.axis('off')
            # plt.show()
        
            buffer = BytesIO()
            frame = Image.fromarray(frame)
            frame.save(buffer, format='jpeg')
            buffer.seek(0)
            cat_frames.append(base64.b64encode(buffer.read()).decode("utf-8"))
            frame_cat_cnts[frame_name] = cat_cnt

            buffer.seek(0)  # Reuse buffer instead of creating a new one
            buffer.truncate()
            frame_for_contour = Image.fromarray(frame_for_contour)
            frame_for_contour.save(buffer, format='jpeg')
            buffer.seek(0)
            contour_frames.append(base64.b64encode(buffer.read()).decode("utf-8"))
        
        encoded_frames[cat] = cat_frames
        contoured_frames[cat] = contour_frames
        vid_cat_cnts[cat] = frame_cat_cnts
    
    return encoded_frames, contoured_frames, vid_cat_cnts


# def number_objects_and_encode(idx, color_mask=False):
#     encoded_frames = {}
#     contoured_frames = {}  # New dictionary for original images
#     vid_cat_cnts = {}

#     vid_meta = metas[idx]
#     vid_data = train_dataset[idx]
#     vid_id = vid_meta['video']
#     frame_indx = vid_meta['sample_indx']
#     cat_names = set(vid_meta['obj_id_cat'].values())
#     imgs = vid_data[0]
    
#     for cat in cat_names:
#         cat_frames = []
#         contour_frames = []
#         frame_cat_cnts = {}

#         for i in range(imgs.size(0)):
#             frame_name = frame_indx[i]
#             frame = np.copy(imgs[i].permute(1, 2, 0).numpy())  
#             frame_for_contour = np.copy(imgs[i].permute(1, 2, 0).numpy()) 

#             frame_data = vid_data[2][frame_name]
#             obj_ids = list(frame_data.keys())

#             cat_cnt = 0

#             for j in range(len(obj_ids)):
#                 obj_id = obj_ids[j]
#                 obj_data = frame_data[obj_id]
#                 obj_bbox = obj_data['bbox']
#                 obj_valid = obj_data['valid']
#                 obj_mask = obj_data['mask'].numpy().astype(np.uint8)
#                 obj_cat = obj_data['category_name']

#                 if obj_cat == cat and obj_valid:
#                     cat_cnt += 1

#                     contours, _ = cv2.findContours(obj_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
#                     cv2.drawContours(frame, contours, -1, colors[j], 3)
#                     cv2.drawContours(frame_for_contour, contours, -1, colors[j], 2)

#                     if len(contours) > 0:
#                         largest_contour = max(contours, key=cv2.contourArea)
#                         M = cv2.moments(largest_contour)
#                         if M["m00"] != 0:
#                             center_x = int(M["m10"] / M["m00"])
#                             center_y = int(M["m01"] / M["m00"])
#                         else:
#                             center_x, center_y = 0, 0

#                     font = cv2.FONT_HERSHEY_SIMPLEX
#                     text = obj_id
#                     font_scale = 1.2
#                     text_size = cv2.getTextSize(text, font, font_scale, 2)[0]
#                     text_x = center_x - text_size[0] // 1
#                     text_y = center_y

#                     rect_start = (text_x - 5, text_y - text_size[1] - 5)
#                     rect_end = (text_x + text_size[0] + 5, text_y + 3)
                    
#                     contour_thickness = 1
#                     rect_start_contour = (rect_start[0] - contour_thickness, rect_start[1] - contour_thickness)
#                     rect_end_contour = (rect_end[0] + contour_thickness, rect_end[1] + contour_thickness)

#                     cv2.rectangle(frame, rect_start_contour, rect_end_contour, colors[j], contour_thickness) 
#                     cv2.rectangle(frame, rect_start, rect_end, (0, 0, 0), -1)  
#                     cv2.putText(frame, text, (text_x, text_y), font, 1, (255, 255, 255), 2)


#                     if color_mask:  
#                         alpha = 0.08
#                         colored_obj_mask = np.zeros_like(frame)
#                         colored_obj_mask[obj_mask == 1] = colors[j]
#                         frame[obj_mask == 1] = (
#                             (1 - alpha) * frame[obj_mask == 1]
#                             + alpha * colored_obj_mask[obj_mask == 1]
#                         )

#             # plt.figure(figsize=(12, 8))
#             # plt.imshow(frame)
#             # plt.title(f"frame {frame_name}")
#             # plt.tight_layout()
#             # plt.axis('off')
#             # plt.show()

#             buffer = BytesIO()
#             frame = Image.fromarray(frame)
#             frame.save(buffer, format='jpeg')
#             buffer.seek(0)
#             cat_frames.append(base64.b64encode(buffer.read()).decode("utf-8"))
#             frame_cat_cnts[frame_name] = cat_cnt

#             buffer.seek(0)  # Reuse buffer instead of creating a new one
#             buffer.truncate()
#             frame_for_contour = Image.fromarray(frame_for_contour)
#             frame_for_contour.save(buffer, format='jpeg')
#             buffer.seek(0)
#             contour_frames.append(base64.b64encode(buffer.read()).decode("utf-8"))
        
#         encoded_frames[cat] = cat_frames
#         contoured_frames[cat] = contour_frames
#         vid_cat_cnts[cat] = frame_cat_cnts
    

#     return encoded_frames, contoured_frames, vid_cat_cnts



def getCaption(idx, model='gpt-4o', color_mask=False):
    vid_meta = metas[idx]
    vid_data = train_dataset[idx]
    vid_id = vid_meta['video']
    print(f"vid id: {vid_id}\n")

    frame_indx = vid_meta['sample_indx']             # e.g. [4, 7, 9, 16]
    cat_names = set(vid_meta['obj_id_cat'].values()) # e.g. {"person", "elephant", ...}
    all_captions = dict()
    

    base64_frames, _ , vid_cat_cnts = number_objects_and_encode(idx, color_mask)
    #marked = "mask with boundary" if color_mask else "boundary"

    for cat_name in list(cat_names) :

        is_movable = False  
        if cat_name in ytvos_category_valid_list :
            is_movable = True
            
        if not is_movable:
            print(f"Skipping {cat_name}: Determined to be non-movable.", end='\n\n')


        image_captions = {}
        captioner = OpenAI()
        cat_base64_frames = base64_frames[cat_name]
        # cont_base64_frames = contoured_frames[cat_name]

        for i in range(len(cat_base64_frames)):
            frame_name = frame_indx[i]
            # cont_base64_image = cont_base64_frames[i]
            base64_image = cat_base64_frames[i]
            should_filter = False
            frame_cat_cnts = vid_cat_cnts[cat_name][frame_name]

            if frame_cat_cnts >= 2:
                should_filter = True
            else:
                print(f"Skipping {cat_name}: There is single or no object.", end='\n\n')
                
                
            if is_movable and should_filter:
                #1단계: 필터링
                print(f"-----------category name: {cat_name}, frame name: {frame_name}")
                caption_filter_text = f"""
                You are a visual assistant analyzing a single frame from a video.
                In this frame, I have labeled {frame_cat_cnts} {cat_name}(s), each with a bright numeric ID at its center and a visible marker.

                Are {cat_name}s in the image performing all different and recognizable actions or postures? 
                Consider differences in body pose (standing, sitting, holding hands up, grabbing object, facing the camera, stretching, walking...), motion cues (inferred from the momentary stance or position), 
                facial expressions, and any notable interactions with objects or other {cat_name}s or people. 

                Only focus on obvious, prominent actions that can be reliably identified from this single frame.
     
                - Respond with "YES" if:
                1) Most of {cat_name}s exhibit clearly different, unique actions or poses.
                    (e.g. standing, sitting, bending, stretching, showing its back, or turning toward the camera.)
                2) You can see visible significant differences in action and posture, that an observer can identify at a glance.
                3) Interaction Variability: Each {cat_name} is engaged in a different type of action, such as one grasping an object while another is observing.

                - Respond with "NONE" if:
                1) The actions or pose are not clearly differentiable or too similar.
                2) Minimal or Ambiguous Motion: The frame does not provide clear evidence of distinct movement beyond subtle shifts in stance.
                3) Passive or Neutral Poses: If multiple {cat_name}(s) are simply standing or sitting without an obvious difference in orientation or motion

                Answer strictly with either "YES" or "NONE".
                """
                
                response1 = captioner.chat.completions.create(
                    model=model,
                    messages=[
                        {
                            "role": "user",
                            "content": [
                                {                            
                                    "type": "text",
                                    "text": caption_filter_text,
                                },
                                {
                                    "type": "image_url",
                                    "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
                                }
                            ],
                        }
                    ],
                )
                response_content = response1.choices[0].message.content
                should_caption = True if "yes" in response_content.lower() else False
                print(f"are {cat_name}s distinguished by action: {response_content}", end='\n\n')
                
            else:
                should_caption = False

            #2단계: dense caption 만들기
            dense_caption_prompt_1 =  f"""
            In the given frame, I labeled {frame_cat_cnts} {cat_name}s by marking each with a bright numeric ID at the center and its boundary. The category name of these objects are : {cat_name}.
            
            Please describe the image focusing on labeled {cat_name}s in detail, focusing on their actions and interactions.
                
            1. Focus only on clear, unique, and prominent actions that distinguish each object.
            2. Avoid describing actions that are too minor, ambiguous, or not visible from the image.
            3. Avoid subjective terms such as 'skilled', 'controlled', or 'focused'. Only describe observable actions.
            4. Do not include common-sense or overly general descriptions like 'the elephant walks'.
            5. Use dynamic action verbs (e.g., holding, throwing, jumping, inspecting) to describe interactions, poses, or movements.
            6. **Avoid overly detailed or speculative descriptions** such as 'slightly moving its mouth' or 'appears to be anticipating'.
                - expressions like 'seems to be', 'appears to be' are BANNED!
            7. Pretend you are observing the scene directly, avoiding phrases like 'it seems' or 'based on the description'.
            8. Include interactions with objects or other entities when they are prominent and observable.
            9. **Do not include descriptions of appearance** such as clothes, color, size, shape etc.
            10. **Do not include relative position** between objects such as 'the left elephant' because left/right can be ambiguous.
            11. Do not mention object IDs.
            12. Use '{cat_name}' as the noun for the referring expressions.

            Note that I want to use your description to create a grounding dataset, therefore, your descriptions for different objects should be unique, i.e., If the image contains multiple {cat_name}s, describe the actions of each individually and ensure the descriptions are non-overlapping and specific.

            - Your answer should contain details, and follow the following format:
                object id. action-oriented description
                (e.g. 1. the person is holding bananas on two hands and opening his mouth, turning the head right.
                      2. a person bending over and touching his boots to tie the shoelace.)
            - for action-oriented description, use {cat_name} as subject noun
            
            **Only include the currently labeled category** in each line (e.g., if it’s a person, do not suddenly label it as other object/animal).
            Please pay attention to the categories of these objects and don’t change them.
            Keep in mind that you should not group the objects, e.g., 2-5. people: xxx, be sure to describe each object separately (one by one). 
            Output referring expressions for each object id. Please start your answer:"""


            dense_caption_prompt_2 = f"""
            You are an advanced visual language model analyzing a video frame.  
            In this frame, {frame_cat_cnts} objects belonging to the category **{cat_name}** have been distinctly labeled with bright numerical IDs at their center and boundary.

            Your task is to generate **action-oriented descriptions** for each labeled {cat_name}.  
            Your descriptions should capture their **observable actions and interactions**, making sure to highlight movement, gestures, and dynamic behaviors.

            ---
            ## Key Guidelines:
            1. **Describe only clear and visible actions** that uniquely define what the {cat_name} is doing.  
            - Example: "grabbing a branch and pulling it down" (**(O) Specific**)  
            - Avoid: "moving slightly to the side" (**(X) Too vague**)  
            
            2. **Do not describe appearance, color, or position**—focus purely on the action.  
            - (X) "A large brown bear standing on the left"  
            - (O) "The bear is lifting its front paws and swiping forward."  

            3. **Use dynamic, action-specific verbs** rather than passive descriptions.  
            - (O) "The giraffe is tilting its head and sniffing the ground."  
            - (X) "The giraffe is near a tree and looking around."  

            4. **Avoid assumptions, emotions, or speculative phrasing.**  
            - (X) "The person seems excited" / "The person might be preparing to jump."  
            - (O) "The person is pushing its front legs against the rock and leaping forward."  

            5. **Avoid overly detailed or speculative descriptions** such as 'slightly moving its mouth' or 'appears to be anticipating'.
                - expressions like 'seems to be', 'appears to be' are BANNED!
            6. Pretend you are observing the scene directly, avoiding phrases like 'it seems' or 'based on the description'.

            7. If multiple {cat_name}s are present, make sure their descriptions are **distinct and non-overlapping**.  
            - **Each object should have a unique, descriptive action.**  
            - (X) "Two dogs are running."  
            - (O) "1. One dog is chasing another, its legs stretched mid-air.  
                   2. The other dog is looking back while speeding up."  

            ---
            ## Output Format:
            - Each labeled **{cat_name}** should have exactly **one line of description**.
            - Format: `ID. {cat_name} + action-based description`  
            - (O) Example:  
                ```
                1. The person is leaning forward while opening a bag with both hands.
                2. The person is holding onto a rope and pulling themselves up.
                ```
            - **Ensure that each object is described individually.**  
            - **Do not group objects into a single sentence** (e.g., "2-5. people: xxx" is NOT allowed).  

            ---
            ## Additional Instructions:
            - **Do NOT** use expressions like "it appears that..." or "it seems like...".  
            - **Do NOT** mention object IDs in the description (only use the provided format).  
            - **DO NOT** include markdown formatting (no bullet points, no asterisks).  
            - **Only describe actions of the labeled {cat_name} objects**—do not introduce unrelated categories.  

            Please generate the action-oriented descriptions for each labeled {cat_name} and start your answer:
            """


            dense_caption_prompt = f"""
            You are a visual assistant analyzing a single frame of a video.  
            In this frame, {frame_cat_cnts} objects belonging to the category **{cat_name}** have been labeled with bright numeric IDs at their center and boundary.

            I am building an **action-centric referring expression** dataset.  
            Your task is to describe each labeled {cat_name} based on **clearly observable and specific actions**.

            ---
            ## Guidelines:
            1. **Focus only on visible and prominent actions** (e.g., running, pushing, grasping an object).  
            2. **Avoid describing minor or ambiguous movements** (e.g., "slightly moving a paw," "tilting head a bit").  
            3. **Do not include subjective or speculative descriptions** (e.g., "it seems excited" or "it might be preparing to jump").  
            4. **Avoid vague expressions** like "engaging with something." Instead, specify the action (e.g., "grabbing a stick," "pressing a button").  
            5. **Use dynamic action verbs** (e.g., holding, throwing, inspecting, leaning, pressing) to highlight motion and interaction.  
            6. If multiple {cat_name}s appear, ensure each description is **distinct and non-overlapping**.  
            7. Base your descriptions on these principles:
            - **Avoid words like 'minimal' or 'slightly'.**  
            - Emphasize **body movement, posture, and motion patterns** (e.g., "lifting its head," "facing forward," "showing its back").  
            - Describe **facial expressions and interactions with objects** (e.g., "opening its mouth wide," "smiling while holding an item").  
            - **Specify actions with other objects or entities** only when they are clear and observable.  
                - (O) "pushing another person"  
                - (X) "interacting with another object"  

            ---
            ## Output Format:
            - Each labeled **{cat_name}** must have **exactly one line**.
            - Format: `ID. {cat_name} + action-based description`  
            - (O) Example:  
                ```
                1. The person is holding ski poles and skiing down a snowy mountain with bent knees.
                2. The person is pulling a baby carriage while smiling.
                ```
            - **Ensure each object is described individually.**  
            - **Do not group multiple objects into a single sentence** (e.g., "2-5. people: xxx" is NOT allowed).  

            ---
            ## Example:
            If the frame has two labeled **bears**, your output should be:
            ```
            1. The bear is reaching out its right paw while leaning forward to catch prey.
            2. A bear is standing upright, facing right, and touching the bike beside it.
            ```

            ---
            ## Additional Instructions:
            - **Do NOT** describe appearance (e.g., color, size, texture) or relative positioning (e.g., "on the left/right").  
            - **Do NOT** reference object IDs explicitly (e.g., "Person 1" or "Object 2" is NOT allowed).  
            - **Do NOT** include markdown formatting (no bullet points, asterisks, or extra symbols).  
            - **Only describe actions of the labeled {cat_name} objects**—do not introduce unrelated categories.  

            Please generate the action-oriented descriptions for each labeled {cat_name} and start your answer:"""


            MAX_RETRIES = 3
            retry_count = 0

            if should_caption:
                while retry_count < MAX_RETRIES:
                    selected_prompt = random.choice([dense_caption_prompt, dense_caption_prompt_2, dense_caption_prompt_1])

                    response2 = captioner.chat.completions.create(
                        model=model,
                        messages=[
                            {
                                "role": "user",
                                "content": [
                                    {
                                        "type": "text",
                                        "text": selected_prompt,
                                    },
                                    {
                                        "type": "image_url",
                                        "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
                                    },
                                ],
                            }
                        ],
                    )

                    # caption = response2.choices[0].message.content
                    #print(f"{image_path} - {frame_name}: {caption}")

                    caption = response2.choices[0].message.content.strip() 
                    caption_lower = caption.lower().lstrip() 

                    if caption_lower.startswith("1.") and not any(
                        phrase in caption_lower for phrase in ["i'm sorry", "please", "can't help"]
                    ):
                        break

                    print(f"Retrying caption generation... ({retry_count + 1}/{MAX_RETRIES})")
                    retry_count += 1
                    time.sleep(2) 

                if retry_count == MAX_RETRIES:
                    caption = None
                    print("Max retries reached. Caption generation failed.")
                    
            else:
                caption = None

            image_captions[frame_name] = caption
        all_captions[cat_name] = image_captions
        
    # final : also prepare valid object ids
    valid_obj_ids = dict()

    for cat in cat_names:
        if cat in ytvos_category_valid_list:
            obj_id_cat = vid_meta['obj_id_cat']
            valid_cat_ids = []
            for obj_id in list(obj_id_cat.keys()):
                if obj_id_cat[obj_id] == cat:
                    valid_cat_ids.append(obj_id)
            valid_obj_ids[cat] = valid_cat_ids

    return vid_id, all_captions, valid_obj_ids


if __name__ == '__main__':
    parser = argparse.ArgumentParser('ReferFormer training and evaluation script', parents=[opts.get_args_parser()])
    parser.add_argument('--save_caption_path', type=str, default="mbench/numbered_captions_gpt-4o_randcap.json")
    parser.add_argument('--save_valid_obj_ids_path', type=str, default="mbench/numbered_valid_obj_ids_gpt-4o_randcap.json")
    
    args = parser.parse_args()

    #==================데이터 불러오기===================
    # 전체 데이터셋
    train_dataset = build_ytvos_ref(image_set = 'train', args = args)

    # 전체 데이터셋 메타데이터
    metas = train_dataset.metas

    # 색상 후보 8개 (RGB 형식)
    colors = [
        (255, 0, 0),    # Red
        (0, 255, 0),    # Green
        (0, 0, 255),    # Blue
        (255, 255, 0),  # Yellow
        (255, 0, 255),  # Magenta
        (0, 255, 255),  # Cyan
        (128, 0, 128),  # Purple
        (255, 165, 0)   # Orange
    ]

    ytvos_category_valid_list = [
    'airplane', 'ape', 'bear', 'bird', 'boat', 'bus', 'camel', 'cat', 'cow', 'crocodile', 
    'deer', 'dog', 'dolphin', 'duck', 'eagle', 'earless_seal', 'elephant', 'fish', 'fox', 'frog', 
    'giant_panda', 'giraffe', 'hedgehog', 'horse', 'leopard', 'lion', 'lizard', 
    'monkey', 'motorbike', 'mouse', 'owl', 'parrot', 'penguin', 'person', 
    'rabbit', 'raccoon', 'sedan', 'shark', 'sheep', 'snail', 'snake',  
    'squirrel', 'tiger', 'train', 'truck', 'turtle', 'whale', 'zebra'
    ]

    #==================gpt 돌리기===================
    os.environ['OPENAI_API_KEY'] = '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'
    
    result_captions = {}
    result_valid_obj_ids = {}

    for i in range(370):
        vid_id, all_captions, valid_obj_ids = getCaption(i, color_mask=False)

        if vid_id not in result_captions:
            result_captions[vid_id] = all_captions
        if vid_id not in result_valid_obj_ids:
            result_valid_obj_ids[vid_id] = valid_obj_ids

    print("Finished!", flush=True)

    with open(args.save_caption_path, "w") as file:
        json.dump(result_captions, file, indent=4)
    
    with open(args.save_valid_obj_ids_path, "w") as file:
        json.dump(result_valid_obj_ids, file, indent=4)