File size: 30,701 Bytes
5c8ef86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 |
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import time
from os import path as osp
from io import BytesIO
import random
from mbench.ytvos_ref import build as build_ytvos_ref
import argparse
import opts
import sys
from pathlib import Path
import os
from os import path as osp
import skimage
from io import BytesIO
import numpy as np
import pandas as pd
import regex as re
import json
import cv2
from PIL import Image, ImageDraw
import torch
from torchvision.transforms import functional as F
from skimage import measure # (pip install scikit-image)
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle
import textwrap
import ipywidgets as widgets
from IPython.display import display, clear_output
from openai import OpenAI
import base64
import json
def number_objects_and_encode(idx, color_mask=False):
encoded_frames = {}
contoured_frames = {} # New dictionary for original images
vid_cat_cnts = {}
vid_meta = metas[idx]
vid_data = train_dataset[idx]
vid_id = vid_meta['video']
frame_indx = vid_meta['sample_indx']
cat_names = set(vid_meta['obj_id_cat'].values())
imgs = vid_data[0]
for cat in cat_names:
cat_frames = []
contour_frames = []
frame_cat_cnts = {}
for i in range(imgs.size(0)):
frame_name = frame_indx[i]
frame = np.copy(imgs[i].permute(1, 2, 0).numpy())
frame_for_contour = np.copy(imgs[i].permute(1, 2, 0).numpy())
frame_data = vid_data[2][frame_name]
obj_ids = list(frame_data.keys())
cat_cnt = 0
for j in range(len(obj_ids)):
obj_id = obj_ids[j]
obj_data = frame_data[obj_id]
obj_bbox = obj_data['bbox']
obj_valid = obj_data['valid']
obj_mask = obj_data['mask'].numpy().astype(np.uint8)
obj_cat = obj_data['category_name']
if obj_cat == cat and obj_valid:
cat_cnt += 1
if color_mask == False:
contours, _ = cv2.findContours(obj_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(frame, contours, -1, colors[j], 3)
for i, contour in enumerate(contours):
moments = cv2.moments(contour)
if moments["m00"] != 0:
cx = int(moments["m10"] / moments["m00"])
cy = int(moments["m01"] / moments["m00"])
else:
cx, cy = contour[0][0]
font = cv2.FONT_HERSHEY_SIMPLEX
text = obj_id
text_size = cv2.getTextSize(text, font, 1, 2)[0]
text_w, text_h = text_size
cv2.rectangle(frame, (cx - text_w // 2 - 5, cy - text_h // 2 - 5),
(cx + text_w // 2 + 5, cy + text_h // 2 + 5), (0, 0, 0), -1)
cv2.putText(frame, text, (cx - text_w // 2, cy + text_h // 2),
font, 1, (255, 255, 255), 2)
else:
alpha = 0.08
colored_obj_mask = np.zeros_like(frame)
colored_obj_mask[obj_mask == 1] = colors[j]
frame[obj_mask == 1] = (
(1 - alpha) * frame[obj_mask == 1]
+ alpha * colored_obj_mask[obj_mask == 1]
)
contours, _ = cv2.findContours(obj_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(frame, contours, -1, colors[j], 2)
cv2.drawContours(frame_for_contour, contours, -1, colors[j], 2)
if len(contours) > 0:
largest_contour = max(contours, key=cv2.contourArea)
M = cv2.moments(largest_contour)
if M["m00"] != 0:
center_x = int(M["m10"] / M["m00"])
center_y = int(M["m01"] / M["m00"])
else:
center_x, center_y = 0, 0
font = cv2.FONT_HERSHEY_SIMPLEX
text = obj_id
font_scale = 0.9
text_size = cv2.getTextSize(text, font, font_scale, 2)[0]
text_x = center_x - text_size[0] // 1
text_y = center_y
rect_start = (text_x - 5, text_y - text_size[1] - 5)
rect_end = (text_x + text_size[0] + 5, text_y)
cv2.rectangle(frame, rect_start, rect_end, (0, 0, 0), -1)
cv2.putText(frame, text, (text_x, text_y), font, 1, (255, 255, 255), 2)
# plt.figure(figsize=(12, 8))
# plt.imshow(frame)
# plt.title(f"frame {frame_name}")
# plt.tight_layout()
# plt.axis('off')
# plt.show()
buffer = BytesIO()
frame = Image.fromarray(frame)
frame.save(buffer, format='jpeg')
buffer.seek(0)
cat_frames.append(base64.b64encode(buffer.read()).decode("utf-8"))
frame_cat_cnts[frame_name] = cat_cnt
buffer.seek(0) # Reuse buffer instead of creating a new one
buffer.truncate()
frame_for_contour = Image.fromarray(frame_for_contour)
frame_for_contour.save(buffer, format='jpeg')
buffer.seek(0)
contour_frames.append(base64.b64encode(buffer.read()).decode("utf-8"))
encoded_frames[cat] = cat_frames
contoured_frames[cat] = contour_frames
vid_cat_cnts[cat] = frame_cat_cnts
return encoded_frames, contoured_frames, vid_cat_cnts
# def number_objects_and_encode(idx, color_mask=False):
# encoded_frames = {}
# contoured_frames = {} # New dictionary for original images
# vid_cat_cnts = {}
# vid_meta = metas[idx]
# vid_data = train_dataset[idx]
# vid_id = vid_meta['video']
# frame_indx = vid_meta['sample_indx']
# cat_names = set(vid_meta['obj_id_cat'].values())
# imgs = vid_data[0]
# for cat in cat_names:
# cat_frames = []
# contour_frames = []
# frame_cat_cnts = {}
# for i in range(imgs.size(0)):
# frame_name = frame_indx[i]
# frame = np.copy(imgs[i].permute(1, 2, 0).numpy())
# frame_for_contour = np.copy(imgs[i].permute(1, 2, 0).numpy())
# frame_data = vid_data[2][frame_name]
# obj_ids = list(frame_data.keys())
# cat_cnt = 0
# for j in range(len(obj_ids)):
# obj_id = obj_ids[j]
# obj_data = frame_data[obj_id]
# obj_bbox = obj_data['bbox']
# obj_valid = obj_data['valid']
# obj_mask = obj_data['mask'].numpy().astype(np.uint8)
# obj_cat = obj_data['category_name']
# if obj_cat == cat and obj_valid:
# cat_cnt += 1
# contours, _ = cv2.findContours(obj_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# cv2.drawContours(frame, contours, -1, colors[j], 3)
# cv2.drawContours(frame_for_contour, contours, -1, colors[j], 2)
# if len(contours) > 0:
# largest_contour = max(contours, key=cv2.contourArea)
# M = cv2.moments(largest_contour)
# if M["m00"] != 0:
# center_x = int(M["m10"] / M["m00"])
# center_y = int(M["m01"] / M["m00"])
# else:
# center_x, center_y = 0, 0
# font = cv2.FONT_HERSHEY_SIMPLEX
# text = obj_id
# font_scale = 1.2
# text_size = cv2.getTextSize(text, font, font_scale, 2)[0]
# text_x = center_x - text_size[0] // 1
# text_y = center_y
# rect_start = (text_x - 5, text_y - text_size[1] - 5)
# rect_end = (text_x + text_size[0] + 5, text_y + 3)
# contour_thickness = 1
# rect_start_contour = (rect_start[0] - contour_thickness, rect_start[1] - contour_thickness)
# rect_end_contour = (rect_end[0] + contour_thickness, rect_end[1] + contour_thickness)
# cv2.rectangle(frame, rect_start_contour, rect_end_contour, colors[j], contour_thickness)
# cv2.rectangle(frame, rect_start, rect_end, (0, 0, 0), -1)
# cv2.putText(frame, text, (text_x, text_y), font, 1, (255, 255, 255), 2)
# if color_mask:
# alpha = 0.08
# colored_obj_mask = np.zeros_like(frame)
# colored_obj_mask[obj_mask == 1] = colors[j]
# frame[obj_mask == 1] = (
# (1 - alpha) * frame[obj_mask == 1]
# + alpha * colored_obj_mask[obj_mask == 1]
# )
# # plt.figure(figsize=(12, 8))
# # plt.imshow(frame)
# # plt.title(f"frame {frame_name}")
# # plt.tight_layout()
# # plt.axis('off')
# # plt.show()
# buffer = BytesIO()
# frame = Image.fromarray(frame)
# frame.save(buffer, format='jpeg')
# buffer.seek(0)
# cat_frames.append(base64.b64encode(buffer.read()).decode("utf-8"))
# frame_cat_cnts[frame_name] = cat_cnt
# buffer.seek(0) # Reuse buffer instead of creating a new one
# buffer.truncate()
# frame_for_contour = Image.fromarray(frame_for_contour)
# frame_for_contour.save(buffer, format='jpeg')
# buffer.seek(0)
# contour_frames.append(base64.b64encode(buffer.read()).decode("utf-8"))
# encoded_frames[cat] = cat_frames
# contoured_frames[cat] = contour_frames
# vid_cat_cnts[cat] = frame_cat_cnts
# return encoded_frames, contoured_frames, vid_cat_cnts
def getCaption(idx, model='gpt-4o', color_mask=False):
vid_meta = metas[idx]
vid_data = train_dataset[idx]
vid_id = vid_meta['video']
print(f"vid id: {vid_id}\n")
frame_indx = vid_meta['sample_indx'] # e.g. [4, 7, 9, 16]
cat_names = set(vid_meta['obj_id_cat'].values()) # e.g. {"person", "elephant", ...}
all_captions = dict()
base64_frames, _ , vid_cat_cnts = number_objects_and_encode(idx, color_mask)
#marked = "mask with boundary" if color_mask else "boundary"
for cat_name in list(cat_names) :
is_movable = False
if cat_name in ytvos_category_valid_list :
is_movable = True
if not is_movable:
print(f"Skipping {cat_name}: Determined to be non-movable.", end='\n\n')
image_captions = {}
captioner = OpenAI()
cat_base64_frames = base64_frames[cat_name]
# cont_base64_frames = contoured_frames[cat_name]
for i in range(len(cat_base64_frames)):
frame_name = frame_indx[i]
# cont_base64_image = cont_base64_frames[i]
base64_image = cat_base64_frames[i]
should_filter = False
frame_cat_cnts = vid_cat_cnts[cat_name][frame_name]
if frame_cat_cnts >= 2:
should_filter = True
else:
print(f"Skipping {cat_name}: There is single or no object.", end='\n\n')
if is_movable and should_filter:
#1단계: 필터링
print(f"-----------category name: {cat_name}, frame name: {frame_name}")
caption_filter_text = f"""
You are a visual assistant analyzing a single frame from a video.
In this frame, I have labeled {frame_cat_cnts} {cat_name}(s), each with a bright numeric ID at its center and a visible marker.
Are {cat_name}s in the image performing all different and recognizable actions or postures?
Consider differences in body pose (standing, sitting, holding hands up, grabbing object, facing the camera, stretching, walking...), motion cues (inferred from the momentary stance or position),
facial expressions, and any notable interactions with objects or other {cat_name}s or people.
Only focus on obvious, prominent actions that can be reliably identified from this single frame.
- Respond with "YES" if:
1) Most of {cat_name}s exhibit clearly different, unique actions or poses.
(e.g. standing, sitting, bending, stretching, showing its back, or turning toward the camera.)
2) You can see visible significant differences in action and posture, that an observer can identify at a glance.
3) Interaction Variability: Each {cat_name} is engaged in a different type of action, such as one grasping an object while another is observing.
- Respond with "NONE" if:
1) The actions or pose are not clearly differentiable or too similar.
2) Minimal or Ambiguous Motion: The frame does not provide clear evidence of distinct movement beyond subtle shifts in stance.
3) Passive or Neutral Poses: If multiple {cat_name}(s) are simply standing or sitting without an obvious difference in orientation or motion
Answer strictly with either "YES" or "NONE".
"""
response1 = captioner.chat.completions.create(
model=model,
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": caption_filter_text,
},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
}
],
}
],
)
response_content = response1.choices[0].message.content
should_caption = True if "yes" in response_content.lower() else False
print(f"are {cat_name}s distinguished by action: {response_content}", end='\n\n')
else:
should_caption = False
#2단계: dense caption 만들기
dense_caption_prompt_1 = f"""
In the given frame, I labeled {frame_cat_cnts} {cat_name}s by marking each with a bright numeric ID at the center and its boundary. The category name of these objects are : {cat_name}.
Please describe the image focusing on labeled {cat_name}s in detail, focusing on their actions and interactions.
1. Focus only on clear, unique, and prominent actions that distinguish each object.
2. Avoid describing actions that are too minor, ambiguous, or not visible from the image.
3. Avoid subjective terms such as 'skilled', 'controlled', or 'focused'. Only describe observable actions.
4. Do not include common-sense or overly general descriptions like 'the elephant walks'.
5. Use dynamic action verbs (e.g., holding, throwing, jumping, inspecting) to describe interactions, poses, or movements.
6. **Avoid overly detailed or speculative descriptions** such as 'slightly moving its mouth' or 'appears to be anticipating'.
- expressions like 'seems to be', 'appears to be' are BANNED!
7. Pretend you are observing the scene directly, avoiding phrases like 'it seems' or 'based on the description'.
8. Include interactions with objects or other entities when they are prominent and observable.
9. **Do not include descriptions of appearance** such as clothes, color, size, shape etc.
10. **Do not include relative position** between objects such as 'the left elephant' because left/right can be ambiguous.
11. Do not mention object IDs.
12. Use '{cat_name}' as the noun for the referring expressions.
Note that I want to use your description to create a grounding dataset, therefore, your descriptions for different objects should be unique, i.e., If the image contains multiple {cat_name}s, describe the actions of each individually and ensure the descriptions are non-overlapping and specific.
- Your answer should contain details, and follow the following format:
object id. action-oriented description
(e.g. 1. the person is holding bananas on two hands and opening his mouth, turning the head right.
2. a person bending over and touching his boots to tie the shoelace.)
- for action-oriented description, use {cat_name} as subject noun
**Only include the currently labeled category** in each line (e.g., if it’s a person, do not suddenly label it as other object/animal).
Please pay attention to the categories of these objects and don’t change them.
Keep in mind that you should not group the objects, e.g., 2-5. people: xxx, be sure to describe each object separately (one by one).
Output referring expressions for each object id. Please start your answer:"""
dense_caption_prompt_2 = f"""
You are an advanced visual language model analyzing a video frame.
In this frame, {frame_cat_cnts} objects belonging to the category **{cat_name}** have been distinctly labeled with bright numerical IDs at their center and boundary.
Your task is to generate **action-oriented descriptions** for each labeled {cat_name}.
Your descriptions should capture their **observable actions and interactions**, making sure to highlight movement, gestures, and dynamic behaviors.
---
## Key Guidelines:
1. **Describe only clear and visible actions** that uniquely define what the {cat_name} is doing.
- Example: "grabbing a branch and pulling it down" (**(O) Specific**)
- Avoid: "moving slightly to the side" (**(X) Too vague**)
2. **Do not describe appearance, color, or position**—focus purely on the action.
- (X) "A large brown bear standing on the left"
- (O) "The bear is lifting its front paws and swiping forward."
3. **Use dynamic, action-specific verbs** rather than passive descriptions.
- (O) "The giraffe is tilting its head and sniffing the ground."
- (X) "The giraffe is near a tree and looking around."
4. **Avoid assumptions, emotions, or speculative phrasing.**
- (X) "The person seems excited" / "The person might be preparing to jump."
- (O) "The person is pushing its front legs against the rock and leaping forward."
5. **Avoid overly detailed or speculative descriptions** such as 'slightly moving its mouth' or 'appears to be anticipating'.
- expressions like 'seems to be', 'appears to be' are BANNED!
6. Pretend you are observing the scene directly, avoiding phrases like 'it seems' or 'based on the description'.
7. If multiple {cat_name}s are present, make sure their descriptions are **distinct and non-overlapping**.
- **Each object should have a unique, descriptive action.**
- (X) "Two dogs are running."
- (O) "1. One dog is chasing another, its legs stretched mid-air.
2. The other dog is looking back while speeding up."
---
## Output Format:
- Each labeled **{cat_name}** should have exactly **one line of description**.
- Format: `ID. {cat_name} + action-based description`
- (O) Example:
```
1. The person is leaning forward while opening a bag with both hands.
2. The person is holding onto a rope and pulling themselves up.
```
- **Ensure that each object is described individually.**
- **Do not group objects into a single sentence** (e.g., "2-5. people: xxx" is NOT allowed).
---
## Additional Instructions:
- **Do NOT** use expressions like "it appears that..." or "it seems like...".
- **Do NOT** mention object IDs in the description (only use the provided format).
- **DO NOT** include markdown formatting (no bullet points, no asterisks).
- **Only describe actions of the labeled {cat_name} objects**—do not introduce unrelated categories.
Please generate the action-oriented descriptions for each labeled {cat_name} and start your answer:
"""
dense_caption_prompt = f"""
You are a visual assistant analyzing a single frame of a video.
In this frame, {frame_cat_cnts} objects belonging to the category **{cat_name}** have been labeled with bright numeric IDs at their center and boundary.
I am building an **action-centric referring expression** dataset.
Your task is to describe each labeled {cat_name} based on **clearly observable and specific actions**.
---
## Guidelines:
1. **Focus only on visible and prominent actions** (e.g., running, pushing, grasping an object).
2. **Avoid describing minor or ambiguous movements** (e.g., "slightly moving a paw," "tilting head a bit").
3. **Do not include subjective or speculative descriptions** (e.g., "it seems excited" or "it might be preparing to jump").
4. **Avoid vague expressions** like "engaging with something." Instead, specify the action (e.g., "grabbing a stick," "pressing a button").
5. **Use dynamic action verbs** (e.g., holding, throwing, inspecting, leaning, pressing) to highlight motion and interaction.
6. If multiple {cat_name}s appear, ensure each description is **distinct and non-overlapping**.
7. Base your descriptions on these principles:
- **Avoid words like 'minimal' or 'slightly'.**
- Emphasize **body movement, posture, and motion patterns** (e.g., "lifting its head," "facing forward," "showing its back").
- Describe **facial expressions and interactions with objects** (e.g., "opening its mouth wide," "smiling while holding an item").
- **Specify actions with other objects or entities** only when they are clear and observable.
- (O) "pushing another person"
- (X) "interacting with another object"
---
## Output Format:
- Each labeled **{cat_name}** must have **exactly one line**.
- Format: `ID. {cat_name} + action-based description`
- (O) Example:
```
1. The person is holding ski poles and skiing down a snowy mountain with bent knees.
2. The person is pulling a baby carriage while smiling.
```
- **Ensure each object is described individually.**
- **Do not group multiple objects into a single sentence** (e.g., "2-5. people: xxx" is NOT allowed).
---
## Example:
If the frame has two labeled **bears**, your output should be:
```
1. The bear is reaching out its right paw while leaning forward to catch prey.
2. A bear is standing upright, facing right, and touching the bike beside it.
```
---
## Additional Instructions:
- **Do NOT** describe appearance (e.g., color, size, texture) or relative positioning (e.g., "on the left/right").
- **Do NOT** reference object IDs explicitly (e.g., "Person 1" or "Object 2" is NOT allowed).
- **Do NOT** include markdown formatting (no bullet points, asterisks, or extra symbols).
- **Only describe actions of the labeled {cat_name} objects**—do not introduce unrelated categories.
Please generate the action-oriented descriptions for each labeled {cat_name} and start your answer:"""
MAX_RETRIES = 3
retry_count = 0
if should_caption:
while retry_count < MAX_RETRIES:
selected_prompt = random.choice([dense_caption_prompt, dense_caption_prompt_2, dense_caption_prompt_1])
response2 = captioner.chat.completions.create(
model=model,
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": selected_prompt,
},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
},
],
}
],
)
# caption = response2.choices[0].message.content
#print(f"{image_path} - {frame_name}: {caption}")
caption = response2.choices[0].message.content.strip()
caption_lower = caption.lower().lstrip()
if caption_lower.startswith("1.") and not any(
phrase in caption_lower for phrase in ["i'm sorry", "please", "can't help"]
):
break
print(f"Retrying caption generation... ({retry_count + 1}/{MAX_RETRIES})")
retry_count += 1
time.sleep(2)
if retry_count == MAX_RETRIES:
caption = None
print("Max retries reached. Caption generation failed.")
else:
caption = None
image_captions[frame_name] = caption
all_captions[cat_name] = image_captions
# final : also prepare valid object ids
valid_obj_ids = dict()
for cat in cat_names:
if cat in ytvos_category_valid_list:
obj_id_cat = vid_meta['obj_id_cat']
valid_cat_ids = []
for obj_id in list(obj_id_cat.keys()):
if obj_id_cat[obj_id] == cat:
valid_cat_ids.append(obj_id)
valid_obj_ids[cat] = valid_cat_ids
return vid_id, all_captions, valid_obj_ids
if __name__ == '__main__':
parser = argparse.ArgumentParser('ReferFormer training and evaluation script', parents=[opts.get_args_parser()])
parser.add_argument('--save_caption_path', type=str, default="mbench/numbered_captions_gpt-4o_randcap.json")
parser.add_argument('--save_valid_obj_ids_path', type=str, default="mbench/numbered_valid_obj_ids_gpt-4o_randcap.json")
args = parser.parse_args()
#==================데이터 불러오기===================
# 전체 데이터셋
train_dataset = build_ytvos_ref(image_set = 'train', args = args)
# 전체 데이터셋 메타데이터
metas = train_dataset.metas
# 색상 후보 8개 (RGB 형식)
colors = [
(255, 0, 0), # Red
(0, 255, 0), # Green
(0, 0, 255), # Blue
(255, 255, 0), # Yellow
(255, 0, 255), # Magenta
(0, 255, 255), # Cyan
(128, 0, 128), # Purple
(255, 165, 0) # Orange
]
ytvos_category_valid_list = [
'airplane', 'ape', 'bear', 'bird', 'boat', 'bus', 'camel', 'cat', 'cow', 'crocodile',
'deer', 'dog', 'dolphin', 'duck', 'eagle', 'earless_seal', 'elephant', 'fish', 'fox', 'frog',
'giant_panda', 'giraffe', 'hedgehog', 'horse', 'leopard', 'lion', 'lizard',
'monkey', 'motorbike', 'mouse', 'owl', 'parrot', 'penguin', 'person',
'rabbit', 'raccoon', 'sedan', 'shark', 'sheep', 'snail', 'snake',
'squirrel', 'tiger', 'train', 'truck', 'turtle', 'whale', 'zebra'
]
#==================gpt 돌리기===================
os.environ['OPENAI_API_KEY'] = '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'
result_captions = {}
result_valid_obj_ids = {}
for i in range(370):
vid_id, all_captions, valid_obj_ids = getCaption(i, color_mask=False)
if vid_id not in result_captions:
result_captions[vid_id] = all_captions
if vid_id not in result_valid_obj_ids:
result_valid_obj_ids[vid_id] = valid_obj_ids
print("Finished!", flush=True)
with open(args.save_caption_path, "w") as file:
json.dump(result_captions, file, indent=4)
with open(args.save_valid_obj_ids_path, "w") as file:
json.dump(result_valid_obj_ids, file, indent=4)
|