File size: 6,717 Bytes
5c8ef86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import time
import copy
import logging

import numpy as np
import torch
import random
import matplotlib.pyplot as plt    

from detectron2.config import configurable
from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T

from transformers import BertTokenizer
from pycocotools import mask as coco_mask

import albumentations as A
# from albumentations.pytorch import ToTensorV2
from PIL import Image, ImageDraw, ImageFilter
from detectron2.utils.visualizer import Visualizer


def convert_coco_poly_to_mask(segmentations, height, width):
    masks = []
    for polygons in segmentations:
        rles = coco_mask.frPyObjects(polygons, height, width)
        mask = coco_mask.decode(rles)
        if len(mask.shape) < 3:
            mask = mask[..., None]
        mask = torch.as_tensor(mask, dtype=torch.uint8)
        mask = mask.any(dim=2)
        masks.append(mask)
    if masks:
        masks = torch.stack(masks, dim=0)
    else:
        masks = torch.zeros((0, height, width), dtype=torch.uint8)
    return masks


def build_transform_train(cfg):
    image_size = cfg.img_size
    # min_scale = cfg.INPUT.MIN_SCALE

    augmentation = []

    augmentation.extend([
        T.Resize((image_size, image_size))
    ])

    return augmentation


def build_transform_test(cfg):
    image_size = cfg.img_size

    augmentation = []

    augmentation.extend([
        T.Resize((image_size, image_size))
    ])

    return augmentation


def COCOVisualization(dataloader, dirname="coco-aug-data-vis"):

    mean = (0.485, 0.456, 0.406)
    std = (0.229, 0.224, 0.225)
    denorm = A.Normalize(
        mean=[-m / s for m, s in zip(mean, std)],
        std=[1.0 / s for s in std],
        max_pixel_value=1.0
    )
    tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

    sent_idx = 0
    os.makedirs(dirname, exist_ok=True)
    # dataloader = build_detection_train_loader(cfg, mapper=mapper)
    it = iter(dataloader)
    batch = next(it)
    n_sample = random.randint(4, len(batch))
    
    for i in range(n_sample):
        batch = next(it)
        img, gt_mask, lang_tokens, lang_mask = batch
        img_np = np.transpose(img.cpu().numpy(), (1,2,0))
        # img_denorm = denorm(image=img_np)['image']
        # img_ndarray = (img_denorm*255).astype(np.uint8)
        seg_target = gt_mask[:,:].cpu().numpy()
        tokens = lang_tokens.reshape(-1).cpu().numpy()
        sentences = tokenizer.decode(tokens, skip_special_tokens=True)
        fpath = os.path.join(dirname, f'sample_{i+1}.jpg')
        fig = plt.figure(figsize=(10,6))
        ax1 = fig.add_subplot(1,2,1)
        ax1.imshow(img_np.astype('uint8'))
        ax1.set_xlabel("Mosaic Image")
        ax2 = fig.add_subplot(1,2,2)
        ax2.imshow(seg_target)
        ax2.set_xlabel("Segmentation Map")
        plt.suptitle(sentences)
        plt.tight_layout()
        plt.savefig(fpath)
    
    # if 'gt_masks' in batch[0].keys():
    #     for i in range(n_sample):
    #         data = batch[i]
    #         img = data['image'].unsqueeze(0)
    #         img_np = np.transpose(img[0].cpu().numpy(), (1,2,0))
    #         img_denorm = denorm(image=img_np)['image']
    #         img_ndarray = (img_denorm*255).astype(np.uint8)
    #         seg_target = data['gt_masks'].squeeze(0)
    #         tensor_embedding = data['lang_tokens'][:,:]
    #         sentences = tokenizer.decode(tensor_embedding[0], skip_special_tokens=True)
    #         # tokens = [ds.tokenizer.decode([w], skip_special_tokens=False) for w in tensor_embedding[0]]
    #         # tokens = [x for x in tokens if x!='[PAD]']
            
    #         fpath = os.path.join(dirname, os.path.basename(data["file_name"]))
    #         fig = plt.figure(figsize=(10,6))
    #         ax1 = fig.add_subplot(1,2,1)
    #         ax1.imshow(img_ndarray)
    #         ax1.set_xlabel("Mosaic Image")
    #         ax2 = fig.add_subplot(1,2,2)
    #         ax2.imshow(seg_target)
    #         ax2.set_xlabel("Segmentation Map")
    #         plt.suptitle(sentences)
    #         plt.tight_layout()
    #         plt.savefig(fpath)
            
    # else :
        
    #     for i in range(n_sample):
    #         d = batch[i]
    #         img = np.array(Image.open(d["file_name"]))
    #         visualizer = Visualizer(img, metadata={})
    #         vis = visualizer.draw_dataset_dict(d)
    #         fpath = os.path.join(dirname, os.path.basename(d["file_name"]))
    #         vis.save(fpath)


def MosaicVisualization(dataloader, dirname="coco-aug-data-vis", n_sample=4):

    mean = (0.485, 0.456, 0.406)
    std = (0.229, 0.224, 0.225)
    denorm = A.Normalize(
        mean=[-m / s for m, s in zip(mean, std)],
        std=[1.0 / s for s in std],
        max_pixel_value=1.0
    )
    tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

    os.makedirs(dirname, exist_ok=True)
    # dataloader = build_detection_train_loader(cfg, mapper=mapper)
    it = iter(dataloader)
    while(n_sample):
        try :
            data = next(it)
            # n_sample = random.randint(1, len(batch))
            # if 'seg_target' in batch[0].keys():
            #     for i in range(n_sample):
            # data = batch[i]
            img = data['image']
            img_np = np.transpose(img.cpu().numpy(), (1,2,0))
            img_denorm = denorm(image=img_np)['image']
            img_ndarray = (img_denorm*255).astype(np.uint8)
            seg_target = data['seg_target']
            tensor_embedding = data['sentence'].reshape(-1).cpu().numpy()
            sentences = tokenizer.decode(tensor_embedding, skip_special_tokens=True)
            # tokens = [ds.tokenizer.decode([w], skip_special_tokens=False) for w in tensor_embedding[0]]
            # tokens = [x for x in tokens if x!='[PAD]']
            
            fpath = os.path.join(dirname, f'sample_{n_sample}.jpg')
            fig = plt.figure(figsize=(10,6))
            ax1 = fig.add_subplot(1,2,1)
            ax1.imshow(img_ndarray)
            ax1.set_xlabel("Mosaic Image")
            ax2 = fig.add_subplot(1,2,2)
            ax2.imshow(seg_target)
            ax2.set_xlabel("Segmentation Map")
            plt.suptitle(sentences)
            plt.tight_layout()
            plt.savefig(fpath)
            n_sample -= 1
        except :
            break
            
    # else :
        
    #     for i in range(n_sample):
    #         d = batch[i]
    #         img = np.array(Image.open(d["file_name"]))
    #         visualizer = Visualizer(img, metadata={})
    #         vis = visualizer.draw_dataset_dict(d)
    #         fpath = os.path.join(dirname, os.path.basename(d["file_name"]))
    #         vis.save(fpath)