File size: 14,107 Bytes
0b32e3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import datetime
import os
import time
import torch
import torch.utils.data
from torch import nn
from functools import reduce
import operator
from bert.modeling_bert import BertModel
from lib import segmentation
import pdb
import transforms
from transforms import transform
from data.dataset_zom import Refzom_DistributedSampler,Referzom_Dataset
from data.dataset import ReferDataset
import utils
import numpy as np
import gc
def get_dataset(image_set, transform, args, eval_mode):
if args.dataset == 'ref-zom':
ds = Referzom_Dataset(args,
split=image_set,
image_transforms=transform,
target_transforms=None,
eval_mode=eval_mode
)
else:
ds = ReferDataset(args,
split=image_set,
image_transforms=transform,
target_transforms=None,
eval_mode=eval_mode
)
num_classes = 2
return ds, num_classes
def computeIoU(pred_seg, gd_seg):
I = np.sum(np.logical_and(pred_seg, gd_seg))
U = np.sum(np.logical_or(pred_seg, gd_seg))
return I, U
def get_transform(args):
transform = [transforms.Resize(args.img_size, args.img_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]
return transforms.Compose(transform)
def criterion(input, target):
weight = torch.FloatTensor([0.9, 1.1]).cuda()
return nn.functional.cross_entropy(input, target, weight=weight)
def evaluate(model, data_loader, bert_model):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
total_its = 0
acc_ious = 0
# evaluation variables
cum_I, cum_U = 0, 0
eval_seg_iou_list = [.5, .6, .7, .8, .9]
seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
seg_total = 0
mean_IoU = []
mean_acc = []
with torch.no_grad():
for data in metric_logger.log_every(data_loader, 100, header):
total_its += 1
image, target, source_type, sentences, sentences1, attentions = data
image, sentences, sentences1, attentions = image.cuda(non_blocking=True), \
sentences.cuda(non_blocking=True), \
sentences1.cuda(non_blocking=True), \
attentions.cuda(non_blocking=True)
sentences = sentences.squeeze(1)
sentences1 = sentences1.squeeze(1)
attentions = attentions.squeeze(1)
target = target.data.numpy()
for j in range(sentences.size(-1)):
last_hidden_states = bert_model(sentences[:, :, j], attention_mask=attentions[:, :, j])[0]
embedding = last_hidden_states.permute(0, 2, 1) # (B, 768, N_l) to make Conv1d happy
embedding1 = embedding
loss_contra, loss_lansim, output = model(image, embedding, embedding1, l_mask=attentions[:, :, j].unsqueeze(-1), training_flag=True)
output_mask = output.argmax(1).cpu().data.numpy()
if source_type[0] == 'zero':
incorrect_num = np.sum(output_mask)
if incorrect_num == 0:
acc = 1
else:
acc = 0
mean_acc.append(acc)
else:
I, U = computeIoU(output_mask, target)
if U == 0:
this_iou = 0.0
else:
this_iou = I*1.0/U
mean_IoU.append(this_iou)
cum_I += I
cum_U += U
for n_eval_iou in range(len(eval_seg_iou_list)):
eval_seg_iou = eval_seg_iou_list[n_eval_iou]
seg_correct[n_eval_iou] += (this_iou >= eval_seg_iou)
seg_total += 1
mIoU = np.mean(mean_IoU)
mean_acc = np.mean(mean_acc)
print('Final results:')
results_str = ''
for n_eval_iou in range(len(eval_seg_iou_list)):
results_str += ' precision@%s = %.2f\n' % \
(str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
results_str += ' overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
results_str += ' mean IoU = %.2f\n' % (mIoU * 100.)
print(results_str)
if args.dataset == 'ref-zom':
print('Mean accuracy for one-to-zero sample is %.2f\n' % (mean_acc*100))
return mIoU, 100 * cum_I / cum_U
def train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, epoch, print_freq,
iterations, bert_model):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
header = 'Epoch: [{}]'.format(epoch)
train_loss = 0
total_its = 0
for data in metric_logger.log_every(data_loader, print_freq, header):
total_its += 1
image, target, source_type, sentences, sentences_masked, attentions = data
source_type = np.array(source_type)
target_flag = np.where(source_type=='zero', 0, 1)
target_flag = torch.tensor(target_flag)
image, target, sentences, sentences_masked, target_flag, attentions = image.cuda(non_blocking=True),\
target.cuda(non_blocking=True),\
sentences.cuda(non_blocking=True),\
sentences_masked.cuda(non_blocking=True),\
target_flag.cuda(non_blocking=True),\
attentions.cuda(non_blocking=True)
sentences = sentences.squeeze(1)
sentences_masked = sentences_masked.squeeze(1)
attentions = attentions.squeeze(1)
last_hidden_states = bert_model(sentences, attention_mask=attentions)[0] # (6, 10, 768)
last_hidden_states1 = bert_model(sentences_masked, attention_mask=attentions)[0] # (6, 10, 768)
embedding = last_hidden_states.permute(0, 2, 1) # (B, 768, N_l) to make Conv1d happy
embedding1 = last_hidden_states1.permute(0, 2, 1) # (B, 768, N_l) to make Conv1d happy
attentions = attentions.unsqueeze(dim=-1) # (batch, N_l, 1)
loss_contra, loss_lansim, output = model(image, embedding, embedding1, l_mask=attentions,target_flag=target_flag, training_flag=True)
loss_seg = criterion(output, target)
loss = loss_seg + loss_lansim * 0.01 + loss_contra * 0.01
optimizer.zero_grad() # set_to_none=True is only available in pytorch 1.6+
loss.backward()
optimizer.step()
lr_scheduler.step()
torch.cuda.synchronize()
train_loss += loss.item()
iterations += 1
metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
metric_logger.update(loss_seg=loss_seg.item(), lr=optimizer.param_groups[0]["lr"])
metric_logger.update(loss_lansim=loss_lansim.item(), lr=optimizer.param_groups[0]["lr"])
metric_logger.update(loss_contra=loss_contra.item(), lr=optimizer.param_groups[0]["lr"])
del image, target, sentences, attentions, loss, output, data
if bert_model is not None:
del last_hidden_states, embedding
gc.collect()
torch.cuda.empty_cache()
torch.cuda.synchronize()
def main(args):
dataset, num_classes = get_dataset("train",
transform(args=args),
args=args,
eval_mode=False)
dataset_test, _ = get_dataset(args.split,
get_transform(args=args),
args=args, eval_mode=True)
# batch sampler
print(f"local rank {args.local_rank} / global rank {utils.get_rank()} successfully built train dataset.")
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
if args.dataset == 'ref-zom':
train_sampler = Refzom_DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank,
shuffle=True)
else:
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank,
shuffle=True)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
# data loader
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=args.batch_size,
sampler=train_sampler, num_workers=args.workers, pin_memory=args.pin_mem, drop_last=True)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers)
# model initialization
print(args.model)
model = segmentation.__dict__[args.model](pretrained=args.pretrained_backbone, args=args)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=True)
single_model = model.module
model_class = BertModel
bert_model = model_class.from_pretrained(args.ck_bert)
bert_model.pooler = None # a work-around for a bug in Transformers = 3.0.2 that appears for DistributedDataParallel
bert_model.cuda()
bert_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(bert_model)
bert_model = torch.nn.parallel.DistributedDataParallel(bert_model, device_ids=[args.local_rank])
single_bert_model = bert_model.module
# resume training
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
single_model.load_state_dict(checkpoint['model'])
single_bert_model.load_state_dict(checkpoint['bert_model'])
# parameters to optimize
backbone_no_decay = list()
backbone_decay = list()
for name, m in single_model.backbone.named_parameters():
if 'norm' in name or 'absolute_pos_embed' in name or 'relative_position_bias_table' in name:
backbone_no_decay.append(m)
else:
backbone_decay.append(m)
params_to_optimize = [
{'params': backbone_no_decay, 'weight_decay': 0.0},
{'params': backbone_decay},
{"params": [p for p in single_model.classifier.parameters() if p.requires_grad]},
{"params": [p for p in single_model.contrastive.parameters() if p.requires_grad]},
# the following are the parameters of bert
{"params": reduce(operator.concat,
[[p for p in single_bert_model.encoder.layer[i].parameters()
if p.requires_grad] for i in range(10)])},
]
# optimizer
optimizer = torch.optim.AdamW(params_to_optimize,
lr=args.lr,
weight_decay=args.weight_decay,
amsgrad=args.amsgrad
)
# learning rate scheduler
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
lambda x: (1 - x / (len(data_loader) * args.epochs)) ** 0.9)
# housekeeping
start_time = time.time()
iterations = 0
best_oIoU = -0.1
# resume training (optimizer, lr scheduler, and the epoch)
if args.resume:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
resume_epoch = checkpoint['epoch']
else:
resume_epoch = -999
# iou, overallIoU = evaluate(model, data_loader_test, bert_model)
# training loops
for epoch in range(max(0, resume_epoch+1), args.epochs):
data_loader.sampler.set_epoch(epoch)
train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, epoch, args.print_freq,
iterations, bert_model)
mean_IoU, overall_IoU = evaluate(model, data_loader_test, bert_model)
save_checkpoint = (best_oIoU < overall_IoU)
if save_checkpoint:
print('Better epoch: {}\n'.format(epoch))
if single_bert_model is not None:
dict_to_save = {'model': single_model.state_dict(), 'bert_model': single_bert_model.state_dict(),
'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
'lr_scheduler': lr_scheduler.state_dict()}
else:
dict_to_save = {'model': single_model.state_dict(),
'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
'lr_scheduler': lr_scheduler.state_dict()}
utils.save_on_master(dict_to_save, os.path.join(args.output_dir,
'model_best_{}.pth'.format(args.model_id)))
best_oIoU = overall_IoU
print('The best_performance is {}'.format(best_oIoU))
# summarize
print('The final_best_performance is {}'.format(best_oIoU))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == "__main__":
from args import get_parser
parser = get_parser()
args = parser.parse_args()
print(f"Available GPUs: {torch.cuda.device_count()}")
# print(f"Setting device to local rank: {args.local_rank}")
# set up distributed learning
utils.init_distributed_mode(args)
print('Image size: {}'.format(str(args.img_size)))
main(args) |