File size: 5,667 Bytes
0b32e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torch
from torch import nn
from torch.nn import functional as F
import pdb

class CrossLayerFuse(nn.Module):
    def __init__(self, in_dims1, in_dims2, out_dims):
        super(CrossLayerFuse, self).__init__()

        self.linear = nn.Linear(in_dims1 + in_dims2, out_dims)
        self.adpool = nn.AdaptiveAvgPool2d((1, 1))

    def forward(self, defea, x):
        x_pre = defea
        x = self.adpool(x).view(x.shape[0], x.shape[1])
        x1 = torch.cat([x_pre, x], dim=1)
        x1 = self.linear(x1)

        return x1

class Transformer_Fusion(nn.Module):
    def __init__(self, dim=768, nhead=8, num_layers=1):
        super(Transformer_Fusion, self).__init__()

        self.decoder_layer = nn.TransformerDecoderLayer(d_model=dim, nhead=nhead)
        self.transformer_model = nn.TransformerDecoder(self.decoder_layer, num_layers=num_layers)

    def forward(self, vis, lan_full):
        WW, HH = vis.shape[2], vis.shape[3]
        vis = vis.view(vis.shape[0], vis.shape[1], -1)
        vis = vis.permute(2, 0, 1)
        lan = lan_full.permute(2, 0, 1)
        vis = self.transformer_model(vis, lan)
        vis = vis.permute(1, 2, 0)
        vis = vis.view(vis.shape[0], vis.shape[1], WW, HH)

        return vis


class Language_Transformer(nn.Module):
    def __init__(self, hidden_size, lan_size):
        super(Language_Transformer, self).__init__()

        self.decoder_layer = nn.TransformerDecoderLayer(d_model=768, nhead=8)
        self.transformer_model = nn.TransformerDecoder(self.decoder_layer, num_layers=1)
        self.conv1 = nn.Conv2d(hidden_size, lan_size, 3, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(lan_size)
        self.relu1 = nn.ReLU()

    def forward(self, vis, lan):

        vis = self.conv1(vis)
        vis = self.bn1(vis)
        vis = self.relu1(vis)
        vis = vis.view(vis.shape[0], vis.shape[1], -1)
        vis = vis.permute(2, 0, 1)
        lan = lan.permute(2, 0, 1)
        out = self.transformer_model(lan, vis)
        out = out.permute(1, 2, 0)

        return out


class Decoder(nn.Module):
    def __init__(self, c4_dims, factor=2):
        super(Decoder, self).__init__()

        lan_size = 768
        hidden_size = lan_size
        c4_size = c4_dims
        c3_size = c4_dims//(factor**1)
        c2_size = c4_dims//(factor**2)
        c1_size = c4_dims//(factor**3)

        self.adpool = nn.AdaptiveAvgPool2d((1, 1))

        self.conv1_4 = nn.Conv2d(c4_size+c3_size, hidden_size, 3, padding=1, bias=False)
        self.bn1_4 = nn.BatchNorm2d(hidden_size)
        self.relu1_4 = nn.ReLU()
        self.conv2_4 = nn.Conv2d(hidden_size, hidden_size, 3, padding=1, bias=False)
        self.bn2_4 = nn.BatchNorm2d(hidden_size)
        self.relu2_4 = nn.ReLU()

        self.transformer_fusion1 = Transformer_Fusion(dim=768, nhead=8, num_layers=1)

        self.conv1_3 = nn.Conv2d(hidden_size + c2_size, hidden_size, 3, padding=1, bias=False)
        self.bn1_3 = nn.BatchNorm2d(hidden_size)
        self.relu1_3 = nn.ReLU()
        self.conv2_3 = nn.Conv2d(hidden_size, hidden_size, 3, padding=1, bias=False)
        self.bn2_3 = nn.BatchNorm2d(hidden_size)
        self.relu2_3 = nn.ReLU()
        self.crossfuse1 = CrossLayerFuse(hidden_size, hidden_size, lan_size)
        self.transformer_fusion2 = Transformer_Fusion(dim=768, nhead=8, num_layers=1)


        self.conv1_2 = nn.Conv2d(hidden_size + c1_size, hidden_size, 3, padding=1, bias=False)
        self.bn1_2 = nn.BatchNorm2d(hidden_size)
        self.relu1_2 = nn.ReLU()
        self.conv2_2 = nn.Conv2d(hidden_size, hidden_size, 3, padding=1, bias=False)
        self.bn2_2 = nn.BatchNorm2d(hidden_size)
        self.relu2_2 = nn.ReLU()

        self.conv1_1 = nn.Conv2d(hidden_size, 2, 1)
        self.lan_func = Language_Transformer(hidden_size, lan_size=768)
        self.crossfuse2 = CrossLayerFuse(lan_size, hidden_size, lan_size)


    def forward(self, lan_full, lan, x_c4, x_c3, x_c2, x_c1):
        # fuse Y4 and Y3
        if x_c4.size(-2) < x_c3.size(-2) or x_c4.size(-1) < x_c3.size(-1):
            x_c4 = F.interpolate(input=x_c4, size=(x_c3.size(-2), x_c3.size(-1)), mode='bilinear', align_corners=True)
        x = torch.cat([x_c4, x_c3], dim=1)
        x = self.conv1_4(x)
        x = self.bn1_4(x)
        x = self.relu1_4(x)
        x = self.conv2_4(x)
        x = self.bn2_4(x)
        x = self.relu2_4(x) # [B, 512, 30, 30]
        de_feat = self.adpool(x).view(x.shape[0], x.shape[1])



        x = self.transformer_fusion1(x, lan_full)

        # fuse top-down features and Y2 features and pre1
        if x.size(-2) < x_c2.size(-2) or x.size(-1) < x_c2.size(-1):
            x = F.interpolate(input=x, size=(x_c2.size(-2), x_c2.size(-1)), mode='bilinear', align_corners=True)
        x = torch.cat([x, x_c2], dim=1)
        x = self.conv1_3(x)
        x = self.bn1_3(x)
        x = self.relu1_3(x)
        x = self.conv2_3(x)
        x = self.bn2_3(x)
        x = self.relu2_3(x) # [B, 512, 60, 60]

        new_lan = self.lan_func(x, lan)
        de_feat = self.crossfuse1(de_feat, x)

        x = self.transformer_fusion2(x, lan_full)

        # fuse top-down features and Y1 features
        if x.size(-2) < x_c1.size(-2) or x.size(-1) < x_c1.size(-1):
            x = F.interpolate(input=x, size=(x_c1.size(-2), x_c1.size(-1)), mode='bilinear', align_corners=True)
        x = torch.cat([x, x_c1], dim=1)
        x = self.conv1_2(x)
        x = self.bn1_2(x)
        x = self.relu1_2(x)
        x = self.conv2_2(x)
        x = self.bn2_2(x)
        x = self.relu2_2(x) # [B, 512, 120, 120]
        de_feat = self.crossfuse2(de_feat, x)

        return de_feat, new_lan, self.conv1_1(x)