File size: 22,734 Bytes
0b32e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import datetime
import os
import time

import torch
import torch.utils.data
from torch import nn

from functools import reduce
import operator
from bert.modeling_bert import BertModel
import json
from lib import segmentation
import pdb
import transforms 
from transforms import transform
from data.dataset_zom import Refzom_DistributedSampler,Referzom_Dataset
from data.dataset_rev import ReferDataset_HP
import utils
import numpy as np
from torch.utils.tensorboard import SummaryWriter
import gc



def get_dataset(image_set, transform, args, eval_mode):
    if args.dataset == 'ref-zom':
        ds = Referzom_Dataset(args,
                    split=image_set,
                    image_transforms=transform,
                    target_transforms=None,
                    eval_mode=eval_mode
                    )
    else:
        ds = ReferDataset_HP(args,
                        split=image_set,
                        image_transforms=transform,
                        target_transforms=None,
                        eval_mode=eval_mode
                        )
    num_classes = 2

    return ds, num_classes



def computeIoU(pred_seg, gd_seg):
    I = np.sum(np.logical_and(pred_seg, gd_seg))
    U = np.sum(np.logical_or(pred_seg, gd_seg))

    return I, U



def get_transform(args):
    transform = [transforms.Resize(args.img_size, args.img_size),
                  transforms.ToTensor(),
                  transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
                  ]

    return transforms.Compose(transform)


def criterion(input, target):
    weight = torch.FloatTensor([0.9, 1.1]).cuda()
    return nn.functional.cross_entropy(input, target, weight=weight)




def return_mask(emb_distance, verb_mask=None):
    B_, B_ = emb_distance.shape
    positive_mask = torch.zeros_like(emb_distance)
    positive_mask.fill_diagonal_(1)  # Set diagonal elements to 1 for all cases
    
    if B_ < len(verb_mask):
        # If B_ equals to 2*K (double the number of verb phrase)
        for i in range(B_ // 2):
            positive_mask[2 * i, 2 * i + 1] = 1
            positive_mask[2 * i + 1, 2 * i] = 1
    else:
        # Process the case where we have a mix of sentences with and without verbs
        i = 0
        while i < B_:
            if verb_mask[i] == 1:
                positive_mask[i, i + 1] = 1
                positive_mask[i + 1, i] = 1
                i += 2
            else:
                i += 1  
    negative_mask = torch.ones_like(emb_distance) - positive_mask
    return positive_mask, negative_mask


def UniAngularContrastLoss(total_fq, verb_mask, alpha=0.5, verbonly=True, m=0.5, tau=0.05, args=None):
    _, C, H, W = total_fq.shape
    
    if verbonly :
        B = total_fq[verb_mask].shape[0]
        emb = torch.mean(total_fq[verb_mask], dim=(-1, -2)).reshape(B, C)
        assert emb.shape[0] % 2 == 0, f"Embedding count {emb.shape[0]} is not divisible by 2."
    else :
        emb = torch.mean(total_fq, dim=-1)

    B_ = emb.shape[0]
    emb_i = emb.unsqueeze(1).repeat(1, B_, 1) # (B_, B_, C) 
    emb_j = emb.unsqueeze(0).repeat(B_, 1, 1) # (B_, B_, C)
    sim = nn.CosineSimilarity(dim=-1, eps=1e-6)
    sim_matrix = sim(emb_i, emb_j).reshape(B_, B_)  # (B_, B_)
    sim_matrix = torch.clamp(sim_matrix, min=-0.9999, max=0.9999)
    
    positive_mask, negative_mask = return_mask(sim_matrix, verb_mask)
    if len(positive_mask) > 0 : 
        sim_matrix_with_margin = sim_matrix.clone()
        sim_matrix_with_margin[positive_mask.bool()] = torch.cos(torch.acos(sim_matrix[positive_mask.bool()]) + m / 57.2958)        

        logits = sim_matrix_with_margin / tau
        exp_logits = torch.exp(logits)
        pos_exp_logits = exp_logits * positive_mask.long()
        pos_exp_logits = pos_exp_logits.sum(dim=-1)

        # print("pos_exp_logits: ", pos_exp_logits.shape)
        total_exp_logits = exp_logits.sum(dim=-1)
        positive_loss = -torch.log(pos_exp_logits / total_exp_logits)
        angular_loss = positive_loss.mean()

        return angular_loss
    else :
        return torch.tensor(0.0, device=total_fq.device)


    
def UniAngularLogitContrastLoss(total_fq, verb_mask, alpha=0.5, verbonly=True, m=0.5, tau=0.05, args=None):        
    epsilon = 1e-10  # Stability term for numerical issues
    _, C, H, W = total_fq.shape

    # Calculate embeddings
    if verbonly :
        B = total_fq[verb_mask].shape[0]
        emb = torch.mean(total_fq[verb_mask], dim=(-1, -2)).reshape(B, C)
        assert emb.shape[0] % 2 == 0, f"Embedding count {emb.shape[0]} is not divisible by 2."
    else :
        emb = torch.mean(total_fq, dim=-1)

    B_ = emb.shape[0]
    emb_i = emb.unsqueeze(1).repeat(1, B_, 1)  # (B_, B_, C)
    emb_j = emb.unsqueeze(0).repeat(B_, 1, 1)  # (B_, B_, C)

    sim = nn.CosineSimilarity(dim=-1, eps=1e-6)
    sim_matrix = sim(emb_i, emb_j).reshape(B_, B_)  # (B_, B_)
    sim_matrix = torch.clamp(sim_matrix, min=-0.9999, max=0.9999)

    margin_in_radians = m / 57.2958  # Convert degrees to radians
    theta_matrix = (torch.pi / 2) - torch.acos(sim_matrix)
    positive_mask, negative_mask = return_mask(sim_matrix, verb_mask)

    theta_with_margin = theta_matrix.clone()
    theta_with_margin[positive_mask.bool()] -= margin_in_radians  # Subtract margin directly for positives

    logits = theta_with_margin / tau  # Scale with temperature

    # Compute exponential logits for softmax
    exp_logits = torch.exp(logits)
    # pos_exp_logits = (exp_logits * positive_mask).sum(dim=-1)  # Positive term
    pos_exp_logits = exp_logits * positive_mask
    pos_exp_logits = pos_exp_logits.sum(dim=-1)

    # neg_exp_logits = (exp_logits * negative_mask).sum(dim=-1)  # Negative term
    # total_exp_logits = pos_exp_logits + neg_exp_logits
    total_exp_logits = exp_logits.sum(dim=-1)

    # pos_exp_logits = pos_exp_logits + epsilon
    # total_exp_logits = total_exp_logits + epsilon

    # Compute angular loss
    loss = -torch.log(pos_exp_logits / total_exp_logits)
    angular_loss = loss.mean()

    return angular_loss



def evaluate(model, data_loader, bert_model):
    model.eval()
    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Test:'
    total_its = 0
    acc_ious = 0

    # evaluation variables
    cum_I, cum_U = 0, 0
    eval_seg_iou_list = [.5, .6, .7, .8, .9]
    seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
    seg_total = 0
    mean_IoU = []
    mean_acc = []
    with torch.no_grad():
        for data in metric_logger.log_every(data_loader, 100, header):
            total_its += 1
            image, target, source_type, sentences, sentences1, attentions = data
            image, sentences, sentences1, attentions = image.cuda(non_blocking=True), \
                                                        sentences.cuda(non_blocking=True), \
                                                        sentences1.cuda(non_blocking=True), \
                                                        attentions.cuda(non_blocking=True)
            sentences = sentences.squeeze(1)
            sentences1 = sentences1.squeeze(1)
            attentions = attentions.squeeze(1)
            target = target.data.numpy()

            for j in range(sentences.size(-1)):

                last_hidden_states = bert_model(sentences[:, :, j], attention_mask=attentions[:, :, j])[0]
                embedding = last_hidden_states.permute(0, 2, 1)  # (B, 768, N_l) to make Conv1d happy
                embedding1 = embedding
                loss_contra, loss_lansim, output = model(image, embedding, embedding1, l_mask=attentions[:, :, j].unsqueeze(-1), training_flag=True)

                output_mask = output.argmax(1).cpu().data.numpy()

                if source_type[0] == 'zero':
                    incorrect_num = np.sum(output_mask)
                    if incorrect_num == 0:
                        acc = 1
                    else:
                        acc = 0
                    mean_acc.append(acc)
                else:
                    I, U = computeIoU(output_mask, target)
                    if U == 0:
                        this_iou = 0.0
                    else:
                        this_iou = I*1.0/U
                    mean_IoU.append(this_iou)
                    cum_I += I
                    cum_U += U

                    for n_eval_iou in range(len(eval_seg_iou_list)):
                        eval_seg_iou = eval_seg_iou_list[n_eval_iou]
                        seg_correct[n_eval_iou] += (this_iou >= eval_seg_iou)

                    seg_total += 1


    mIoU = np.mean(mean_IoU)
    mean_acc = np.mean(mean_acc)
    precs = []
    print('Final results:')
    results_str = ''
    for n_eval_iou in range(len(eval_seg_iou_list)):
        results_str += '    precision@%s = %.2f\n' % \
                       (str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
        precs.append(seg_correct[n_eval_iou] * 100. / seg_total)

    results_str += '    overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
    results_str += '    mean IoU = %.2f\n' % (mIoU * 100.)
    print(results_str)
    if args.dataset == 'ref-zom':
        print('Mean accuracy for one-to-zero sample is %.2f\n' % (mean_acc*100))

    return mIoU, 100 * cum_I / cum_U, precs


def train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, epoch, print_freq,
                    iterations, bert_model, metric_learning, args):
    model.train()
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
    header = 'Epoch: [{}]'.format(epoch)
    train_loss = 0
    total_its = 0
    mlw = args.metric_loss_weight
    metric_mode = args.metric_mode


    for data in metric_logger.log_every(data_loader, print_freq, header):
        total_its += 1
        image, target, source_type, sentences, sentences_masked, attentions, pos_sent, pos_attn_mask, pos_type = data
        source_type = np.array(source_type)
        pos_type = np.array(pos_type)
        target_flag = torch.tensor(np.where(source_type == 'zero', 0, 1))
        hardpos_flag = torch.tensor(np.where((source_type != 'zero') & (pos_type == 'hardpos'), 1, 0))

        sentences = sentences.squeeze(1)
        sentences_masked = sentences_masked.squeeze(1)
        attentions = attentions.squeeze(1)
        pos_sent = pos_sent.squeeze(1)
        pos_attn_mask = pos_attn_mask.squeeze(1)

        ## ver 1 : hardpos flag outside the model
        verb_masks = [] 
        cl_masks = []
        images = []  
        targets = []
        sentences_ = []
        sentences_masked_ = []
        attentions_ = []
                
        # print(image.shape, sentences.shape, pos_attn_mask.shape)
        for idx in range(len(image)) : 
            # Append original data
            sentences_.append(sentences[idx])
            sentences_masked_.append(sentences_masked[idx])
            images.append(image[idx])
            targets.append(target[idx])
            attentions_.append(attentions[idx])

            if hardpos_flag[idx]:
                verb_masks.extend([1, 1])
                cl_masks.extend([1, 0])
                sentences_.append(pos_sent[idx])
                sentences_masked_.append(sentences_masked[idx])
                images.append(image[idx])
                targets.append(target[idx])
                attentions_.append(pos_attn_mask[idx])

            else:
                verb_masks.append(0)
                cl_masks.append(1)                    

        image, target, sentences, sentences_masked, attentions, verb_masks, cl_masks = \
                                                        torch.stack(images).cuda(non_blocking=True),\
                                                        torch.stack(targets).cuda(non_blocking=True),\
                                                        torch.stack(sentences_).cuda(non_blocking=True),\
                                                        torch.stack(sentences_masked_).cuda(non_blocking=True),\
                                                        torch.stack(attentions_).cuda(non_blocking=True),\
                                                        torch.tensor(verb_masks, dtype=torch.bool, device='cuda'),\
                                                        torch.tensor(cl_masks, dtype=torch.bool, device='cuda')

        ## apply bert language enc
        last_hidden_states = bert_model(sentences, attention_mask=attentions)[0]  # (B+P, 10, 768)
        last_hidden_states1 = bert_model(sentences_masked, attention_mask=attentions)[0]  # (B+P, 10, 768)
        embedding = last_hidden_states.permute(0, 2, 1)  # (B+P, 768, N_l) to make Conv1d happy
        embedding1 = last_hidden_states1.permute(0, 2, 1)  # (B+P, 768, N_l) to make Conv1d happy
        attentions = attentions.unsqueeze(dim=-1)  # (batch, N_l, 1)
        
        ########################### TODO ##################################
        
        loss_contra, loss_lansim, output, metric_tensors = model(image, embedding, embedding1, l_mask=attentions, cl_masks=cl_masks, target_flag=target_flag, training_flag=True)

        loss_seg = criterion(output[cl_masks], target[cl_masks]) 
        
        if metric_learning and sum(hardpos_flag) > 0 :
            metric_loss = UniAngularLogitContrastLoss(metric_tensors, verb_masks, m=args.margin_value, tau=args.temperature, verbonly=True, args=args)
            total_weight = 1 + 0.01 + 0.01 + mlw
            loss = (loss_seg + loss_lansim * 0.01 + loss_contra * 0.01 + metric_loss * mlw) / total_weight            
        else :     
            loss = loss_seg + loss_lansim * 0.01 + loss_contra * 0.01
            
        optimizer.zero_grad()  # set_to_none=True is only available in pytorch 1.6+
        loss.backward()
        optimizer.step()
        lr_scheduler.step()

        torch.cuda.synchronize()
        train_loss += loss.item()
        iterations += 1
        metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
        metric_logger.update(loss_seg=loss_seg.item(), lr=optimizer.param_groups[0]["lr"])
        metric_logger.update(loss_lansim=loss_lansim.item(), lr=optimizer.param_groups[0]["lr"])
        metric_logger.update(loss_contra=loss_contra.item(), lr=optimizer.param_groups[0]["lr"])

        del image, target, sentences, sentences_masked, attentions, verb_masks, cl_masks, loss, output, metric_tensors, data

        if bert_model is not None:
            del last_hidden_states, embedding, last_hidden_states1, embedding1
        gc.collect()
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

    loss_log = {
        'loss': metric_logger.meters['loss'].global_avg
        }
    return iterations, loss_log


def main(args):
    writer = SummaryWriter('./experiments/{}/{}'.format("_".join([args.dataset, args.splitBy]), args.model_id))

    dataset, num_classes = get_dataset("train",
                                       transform(args=args),
                                       args=args,
                                       eval_mode=False)
    dataset_test, _ = get_dataset(args.split,
                                  get_transform(args=args),
                                  args=args, eval_mode=True)

    # batch sampler
    print(f"local rank {args.local_rank} / global rank {utils.get_rank()} successfully built train dataset.")
    num_tasks = utils.get_world_size()
    global_rank = utils.get_rank()
    if args.dataset == 'ref-zom':
        train_sampler = Refzom_DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank,
                                                                        shuffle=True)
    else:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank,
                                                                        shuffle=True)
    test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    # data loader
    data_loader = torch.utils.data.DataLoader(
        dataset, batch_size=args.batch_size,
        sampler=train_sampler, num_workers=args.workers, pin_memory=args.pin_mem, drop_last=True)

    data_loader_test = torch.utils.data.DataLoader(
        dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers)

    # model initialization
    print(args.model)
    model = segmentation.__dict__[args.model](pretrained=args.pretrained_backbone, args=args)
    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    model.cuda()
    model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=True)
    single_model = model.module

    model_class = BertModel
    bert_model = model_class.from_pretrained(args.ck_bert)
    bert_model.pooler = None  # a work-around for a bug in Transformers = 3.0.2 that appears for DistributedDataParallel
    bert_model.cuda()
    bert_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(bert_model)
    bert_model = torch.nn.parallel.DistributedDataParallel(bert_model, device_ids=[args.local_rank])
    single_bert_model = bert_model.module


    # resume training
    if args.resume:
        checkpoint = torch.load(args.resume, map_location='cpu')
        single_model.load_state_dict(checkpoint['model'])
        single_bert_model.load_state_dict(checkpoint['bert_model'])

    # parameters to optimize
    backbone_no_decay = list()
    backbone_decay = list()
    for name, m in single_model.backbone.named_parameters():
        if 'norm' in name or 'absolute_pos_embed' in name or 'relative_position_bias_table' in name:
            backbone_no_decay.append(m)
        else:
            backbone_decay.append(m)

    params_to_optimize = [
        {'params': backbone_no_decay, 'weight_decay': 0.0},
        {'params': backbone_decay},
        {"params": [p for p in single_model.classifier.parameters() if p.requires_grad]},
        {"params": [p for p in single_model.contrastive.parameters() if p.requires_grad]},
        # the following are the parameters of bert
        {"params": reduce(operator.concat,
                            [[p for p in single_bert_model.encoder.layer[i].parameters()
                            if p.requires_grad] for i in range(10)])},
    ]
    # {"params": reduce(operator.concat,
    #                     [[p for p in single_bert_model.encoder.layer[i].parameters()
    #                     if p.requires_grad] for i in range(10)]), 'lr': args.lr/10},
    # optimizer
    optimizer = torch.optim.AdamW(params_to_optimize,
                                  lr=args.lr,
                                  weight_decay=args.weight_decay,
                                  amsgrad=args.amsgrad
                                  )

    # learning rate scheduler
    lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
                                                     lambda x: (1 - x / (len(data_loader) * args.epochs)) ** 0.9)

    # housekeeping
    start_time = time.time()
    iterations = 0
    best_oIoU = -0.1

    # resume training (optimizer, lr scheduler, and the epoch)
    if args.resume:
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
        resume_epoch = checkpoint['epoch']
    else:
        resume_epoch = -999

    # iou, overallIoU = evaluate(model, data_loader_test, bert_model)
    # training loops
    for epoch in range(max(0, resume_epoch+1), args.epochs):
        data_loader.sampler.set_epoch(epoch)
        itrs_temp, loss_log = train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, epoch, args.print_freq,
                        iterations, bert_model, metric_learning=args.metric_learning, args=args)
        mean_IoU, overall_IoU, precs = evaluate(model, data_loader_test, bert_model)

        print('Average object IoU {}'.format(mean_IoU))
        print('Overall IoU {}'.format(overall_IoU))


        save_checkpoint = (best_oIoU < overall_IoU)
        if save_checkpoint:
            print('Better epoch: {}\n'.format(epoch))
            if single_bert_model is not None:
                dict_to_save = {'model': single_model.state_dict(), 'bert_model': single_bert_model.state_dict(),
                                'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
                                'lr_scheduler': lr_scheduler.state_dict()}
            else:
                dict_to_save = {'model': single_model.state_dict(),
                                'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
                                'lr_scheduler': lr_scheduler.state_dict()}

            utils.save_on_master(dict_to_save, os.path.join(args.output_dir,
                                                            'model_best_{}.pth'.format(args.model_id)))
            best_oIoU = overall_IoU
            print('The best_performance is {}'.format(best_oIoU))


        if utils.is_main_process():
            writer.add_scalar('val/mIoU', mean_IoU, epoch)
            writer.add_scalar('val/oIoU', overall_IoU, epoch)
            writer.add_scalar('val/Prec/50', precs[0], epoch)
            writer.add_scalar('val/Prec/60', precs[1], epoch)
            writer.add_scalar('val/Prec/70', precs[2], epoch)
            writer.add_scalar('val/Prec/80', precs[3], epoch)
            writer.add_scalar('val/Prec/90', precs[4], epoch)
            writer.add_scalar('train/loss', loss_log['loss'], epoch)

    writer.flush()
    

    # summarize
    print('The final_best_performance is {}'.format(best_oIoU))
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))


if __name__ == "__main__":
    from args import get_parser
    parser = get_parser()
    args = parser.parse_args()
    # set up distributed learning
    
    if "LOCAL_RANK" in os.environ:
        local_rank = int(os.environ["LOCAL_RANK"])
    else:
        local_rank = 0  # Default value for non-distributed mode

    print(f"Local Rank: {local_rank}, World Size: {os.environ.get('WORLD_SIZE', '1')}")


    utils.init_distributed_mode(args)
    print('Image size: {}'.format(str(args.img_size)))
    print('Metric Learning Ops')
    print('metric learning flag : ', args.metric_learning)
    print('metric loss weight : ', args.metric_loss_weight)
    print('metric mode and hardpos selection : ', args.metric_mode, args.hp_selection)
    print('margin value : ', args.margin_value)
    print('temperature : ', args.temperature)
    main(args)