File size: 5,628 Bytes
0b32e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
import torch.utils.data

from bert.modeling_bert import BertModel
from data.dataset_zom import Referzom_Dataset
from data.dataset import ReferDataset

from lib import segmentation
import transforms as T
import utils

import numpy as np
import torch.nn.functional as F
import pdb


def get_dataset(image_set, transform, args, eval_mode):
    if args.dataset == 'ref-zom':
        ds = Referzom_Dataset(args,
                    split=image_set,
                    image_transforms=transform,
                    target_transforms=None,
                    eval_mode=eval_mode
                    )
    else:
        ds = ReferDataset(args,
                        split=image_set,
                        image_transforms=transform,
                        target_transforms=None,
                        eval_mode=eval_mode
                        )
    num_classes = 2

    return ds, num_classes


def evaluate(model, data_loader, bert_model, device):
    model.eval()
    metric_logger = utils.MetricLogger(delimiter="  ")

    # evaluation variables
    cum_I, cum_U = 0, 0
    eval_seg_iou_list = [.5, .6, .7, .8, .9]
    seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
    seg_total = 0
    mean_IoU = []
    mean_acc = []

    header = 'Test:'

    with torch.no_grad():
        for data in metric_logger.log_every(data_loader, 100, header):
            image, target, source_type,  sentences, sentences_masked, attentions = data

            image, target, sentences, attentions = image.to(device), target.to(device), \
                                                   sentences.to(device), attentions.to(device)
            sentences = sentences.squeeze(1)
            attentions = attentions.squeeze(1)
            target = target.cpu().data.numpy()
            for j in range(sentences.size(-1)):

                last_hidden_states = bert_model(sentences[:, :, j], attention_mask=attentions[:, :, j])[0]
                embedding = last_hidden_states.permute(0, 2, 1)
                output = model(image, embedding, embedding, l_mask=attentions[:, :, j].unsqueeze(-1))[2]

                output = output.cpu()
                output_mask = output.argmax(1).data.numpy()
                
                if source_type[0] == 'zero':
                    incorrect_num = np.sum(output_mask)
                    if incorrect_num == 0:
                        acc = 1
                    else:
                        acc = 0
                    mean_acc.append(acc)
                else:
                    I, U = computeIoU(output_mask, target)

                    if U == 0:
                        this_iou = 0.0
                    else:
                        this_iou = I*1.0/U
                    mean_IoU.append(this_iou)
                    cum_I += I
                    cum_U += U

                    for n_eval_iou in range(len(eval_seg_iou_list)):
                        eval_seg_iou = eval_seg_iou_list[n_eval_iou]
                        seg_correct[n_eval_iou] += (this_iou >= eval_seg_iou)

                    seg_total += 1

            del image, target, sentences, attentions, output, output_mask
            if bert_model is not None:
                del last_hidden_states, embedding

    mean_IoU = np.array(mean_IoU)
    mIoU = np.mean(mean_IoU)


    mean_acc = np.array(mean_acc)
    mean_acc = np.mean(mean_acc)

    print('Final results:')

    results_str = ''
    for n_eval_iou in range(len(eval_seg_iou_list)):
        results_str += '    precision@%s = %.2f\n' % \
                       (str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
    results_str += '    overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
    results_str += '    mean IoU = %.2f\n' % (mIoU * 100.)
    print(results_str)
    if args.dataset == 'ref-zom':
        print('Mean accuracy for one-to-zero sample is %.2f\n' % (mean_acc*100))

def get_transform(args):
    transforms = [T.Resize(args.img_size, args.img_size),
                  T.ToTensor(),
                  T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
                  ]

    return T.Compose(transforms)


def computeIoU(pred_seg, gd_seg):
    I = np.sum(np.logical_and(pred_seg, gd_seg))
    U = np.sum(np.logical_or(pred_seg, gd_seg))

    return I, U


def main(args):
    device = torch.device(args.device)
    dataset_test, _ = get_dataset(args.split, get_transform(args=args), args, eval_mode=True)
    test_sampler = torch.utils.data.SequentialSampler(dataset_test)
    data_loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=1,
                                                   sampler=test_sampler, num_workers=args.workers)
    print(args.model)
    single_model = segmentation.__dict__[args.model](pretrained='',args=args)
    checkpoint = torch.load(args.test_parameter, map_location='cpu')
    single_model.load_state_dict(checkpoint['model'])
    model = single_model.to(device)

    model_class = BertModel
    single_bert_model = model_class.from_pretrained(args.ck_bert)
    # work-around for a transformers bug; need to update to a newer version of transformers to remove these two lines
    if args.ddp_trained_weights:
        single_bert_model.pooler = None
    single_bert_model.load_state_dict(checkpoint['bert_model'])
    bert_model = single_bert_model.to(device)


    evaluate(model, data_loader_test, bert_model, device=device)


if __name__ == "__main__":
    from args import get_parser
    parser = get_parser()
    args = parser.parse_args()
    print('Image size: {}'.format(str(args.img_size)))
    main(args)