File size: 18,094 Bytes
9b855a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
[](https://opensource.org/licenses/Apache-2.0)
[](https://pytorch.org/)
[](https://paperswithcode.com/sota/referring-expression-segmentation-on-refer-1?p=language-as-queries-for-referring-video)
[](https://paperswithcode.com/sota/referring-expression-segmentation-on-a2d?p=language-as-queries-for-referring-video)
The official implementation of the **CVPR2022** paper:
<div align="center">
<h1>
<b>
Language as Queries for Referring <br> Video Object Segmentation
</b>
</h1>
</div>
<p align="center"><img src="docs/network.png" width="800"/></p>
> [**Language as Queries for Referring Video Object Segmentation**](https://arxiv.org/abs/2201.00487)
>
> Jiannan Wu, Yi Jiang, Peize Sun, Zehuan Yuan, Ping Luo
### Abstract
In this work, we propose a simple and unified framework built upon Transformer, termed ReferFormer. It views the language as queries and directly attends to the most relevant regions in the video frames. Concretely, we introduce a small set of object queries conditioned on the language as the input to the Transformer. In this manner, all the queries are obligated to find the referred objects only. They are eventually transformed into dynamic kernels which capture the crucial object-level information, and play the role of convolution filters to generate the segmentation masks from feature maps. The object tracking is achieved naturally by linking the corresponding queries across frames. This mechanism greatly simplifies the pipeline and the end-to-end framework is significantly different from the previous methods. Extensive experiments on Ref-Youtube-VOS, Ref-DAVIS17, A2D-Sentences and JHMDB-Sentences show the effectiveness of ReferFormer.
## Update
- **(2022/12/19)** We add the results on RefCOCO/+/g validation set.
- **(2022/07/31)** We upload the files for joint-training.
- **(2022/04/04)** We upload the data conversion and main files for pre-training.
- **(2022/03/11)** We upload the model on Ref-Youtube-VOS by jointly training Ref-Youtube-VOS and Ref-COCO/+/g, which leads to higher performance.
- **(2022/03/03)** ReferFormer is accepted by CVPR2022. π
## Demo
- Ref-DAVIS17
<img src="docs/davis_demo1.gif" width="400"/><img src="docs/davis_demo2.gif" width="400"/>
- Ref-Youtube-VOS
<img src="docs/ytvos_demo1.gif" width="400"/><img src="docs/ytvos_demo2.gif" width="400"/>
## Requirements
We test the codes in the following environments, other versions may also be compatible:
- CUDA 11.1
- Python 3.7
- Pytorch 1.8.1
## Installation
Please refer to [install.md](docs/install.md) for installation.
## Data Preparation
Please refer to [data.md](docs/data.md) for data preparation.
We provide the pretrained model for different visual backbones. You may download them [here]([https://drive.google.com/drive/u/0/folders/11_qps3q75aH41IYHlXToyeIBUKkfdqso](https://connecthkuhk-my.sharepoint.com/:f:/g/personal/wjn922_connect_hku_hk/Et657S8tgGRNguj2hf4azsUBn1UVbMNLAmyjcRWGobs2_A?e=xobQFH)) and put them in the directory `pretrained_weights`.
<!-- For the Swin Transformer and Video Swin Transformer backbones, the weights are intialized using the pretrained model provided in the repo [Swin-Transformer](https://github.com/microsoft/Swin-Transformer) and [Video-Swin-Transformer](https://github.com/SwinTransformer/Video-Swin-Transformer). For your convenience, we upload the pretrained model in the google drives [swin_pretrained](https://drive.google.com/drive/u/0/folders/1QWLayukDJYAxTFk7NPwerfso3Lrx35NL) and [video_swin_pretrained](https://drive.google.com/drive/u/0/folders/19qb9VbKSjuwgxsiPI3uv06XzQkB5brYM). -->
After the organization, we expect the directory struture to be the following:
```
ReferFormer/
βββ data/
β βββ ref-youtube-vos/
β βββ ref-davis/
β βββ a2d_sentences/
β βββ jhmdb_sentences/
βββ davis2017/
βββ datasets/
βββ models/
βββ scipts/
βββ tools/
βββ util/
βββ pretrained_weights/
βββ eval_davis.py
βββ main.py
βββ engine.py
βββ inference_ytvos.py
βββ inference_davis.py
βββ opts.py
...
```
## Model Zoo
All the models are trained using 8 NVIDIA Tesla V100 GPU. You may change the `--backbone` parameter to use different backbones (see [here](https://github.com/wjn922/ReferFormer/blob/232b4066fb7d10845e4083e6a5a2cc0af5d1757e/opts.py#L31)).
**Note:** If you encounter the `OOM` error, please add the command `--use_checkpoint` (we add this command for Swin-L, Video-Swin-S and Video-Swin-B models).
### Ref-Youtube-VOS
To evaluate the results, please upload the zip file to the [competition server](https://competitions.codalab.org/competitions/29139#participate-submit_results).
| Backbone| J&F | CFBI J&F | Pretrain | Model | Submission | CFBI Submission |
| :----: | :----: | :----: | :----: | :----: | :----: | :----: |
| ResNet-50 | 55.6 | 59.4 | [weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EepGibYBfyRGt_QedfE9SywBLF3v-bjoxo2R9E9YDqmIcw?e=7J7k1J) | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EVRsV76e78lKuekbMLHgwlsBdG09pRVafEuBPN_wKXjJ1Q?e=SMeZlS) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EZ8tt46rv4xIjoiUkHGGPjwB1Yi6w2H-9BBVTyINOINmgQ?e=yWbDjp) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EZp0dd70UCNGvla2g25lTawB2AZyCDPN7QMl_KeESI5dkQ?e=1BfD2W) |
| ResNet-101 | 57.3 | 60.3 | [weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/ESTAK4QCkMdNkVlQz1dd7GoBo3n_i9K4_FK4YLFBAFvBrg?e=Y3PlD5) | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EaHNEx5MWR9HjTNh__W3IlYBIfhGd-nHKrshJ-MOyvofdw?e=shM4Ok) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EbrNhmt-wiNIv2tmQ-gOupgBrSBzhM1OJlNvid0J_8cPJg?e=8Fgets) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EWSPiUjgmORMuyaL91ueY1oBl159pO4k7RQYF-9eWrSJ-A?e=81hzDF) |
| Swin-T | 58.7 | 61.2 | [weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/ESdasB6JLydDrs6mf68FrLMBuQBLBF7y_uxdveWl9oK68w?e=H5zeqk) | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EUxJmp6QYR5LoUK12Wj55E0Bm0o6_9zl3OvOBN5KE9kJkg?e=SRS0qL) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EUMveO7cX1VAq48IAk9c6zoBc_Zy5f1kwa5h6C9q4LYt0A?e=iz9uMg) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EcnHrx4S5KVPqFYhr9CCARoBftAxdtldaWyGQAougBFnig?e=KG1LDq) |
| Swin-L | 62.4 | 63.3 | [weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/ESngRLeZfV1LtrlZ7x5cVo4BR5_deWfov4Igt28LZGoDew?e=AVAsws) | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EcCfv66Vl0xDl-rFukByXyQBEFNRTyLeVEKoeWrIvXmjNg?e=GcVTIr) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EdI15ujU4UpBilI4wt5lUQQB98JOq6KnMV5GHh77QiAn-w?e=o91ITz) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/ETmJUpRGgyFHlGdEhcXqzekBDAfbFTExfHtmA4wHKCOkLw?e=l951Ea) |
| Video-Swin-T* | 56.0 | - | - | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EYXL3SKYOsRGtfSN-Wr9JCUBDvcXbbp67Sa4hs5dEDplxw?e=g2hGWo) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EUosvwAGikhGsyTPEOELMjEBQM-HZOaJ3fqcJjG2SV-5YA?e=vSUD12) | - |
| Video-Swin-T | 59.4 | - | [weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EUNTvEGXlsdLv3gicAbHfN0Ba23kcyy2-Z15IJTDLXKx_A?e=GqAYxT) | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EZI2zogC5mtDu3KL5MVIaXIBzG3_3yTthoqyxjfTsGrvzA?e=lT5sVp) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EVKtr-5ZK5NIhhTvaUXGdRcBcHEGahAevUh1YCO2nvFfaQ?e=9Am7dc) | - |
| Video-Swin-S | 60.1 | - | [weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/Eb015DXX1LhDpiDoojxJTu8BBQ8ACicpVS8gwFStRJDK1w?e=NC368q) | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EZI2zogC5mtDu3KL5MVIaXIBzG3_3yTthoqyxjfTsGrvzA?e=QEAdwh) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EUUJn8Zu7mlCnxLP8eNSbpIBvoEqz88EOg3y9ftQHhAhCw?e=RnSwxX) | - |
| Video-Swin-B | 62.9 | - |[weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/ETDj4aGm_pRMuz8hLBi9Jy0BEFnsco0Uoz5qQEhWrxdNKQ?e=kKImMX) | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EduJ_zS-Vd5Hn1qexxv5_mYBKX_8kRBOeX6dlfhED_GSwg?e=TxTWHb) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EZKduAM1fLpJrLK7l762xZ8BesK7zWKBjR0b9dFbCWhbfQ?e=SlAdyg) | - |
\* indicates the model is trained from scratch.
Joint training with Ref-COCO/+/g datasets.
| Backbone| J&F | J | F | Model | Submission |
| :----: | :----: | :----: | :----: | :----: | :----: |
| ResNet-50 | 58.7 | 57.4 | 60.1 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EcxDd8USU4BGo_HlgukKiG4BXLvetkjLdi3_-N-3SpjMvw?e=tAPNFv) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EYmORJYVsUJLp8NnbtfnZigBCM-IJ5oomZZrXEbNPhIyww?e=Bh5eYx) |
| ResNet-101 | 59.3 | 58.1 | 60.4 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EShgDd650nBBsfoNEiUbybcB84Ma5NydxOucISeCrZmzHw?e=YOSszd) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EcW6Lt67k0RCjr_FT2XOxVcBUcrFSlFJo19-YdFZpBxOsg?e=avszXt) |
| Swin-L | 64.2 | 62.3 | 66.2 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/Ec_qxgvukuBPr-GQ_3gNcX0B8VCHCqIUvXX-0ydtk1s7HQ?e=7X99M1) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EbNV0kBQ7ZVDrfRafG6B3CwBbpM-yMJtQ9jI01HwEgWXBQ?e=FzoSrT) |
| Video-Swin-T | 62.6 | 59.9 | 63.3 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EdCVQzM4HxxIvdZUBLiNpBwBrcPTLlFEqxHVxOzx0geF3A?e=1ZSZvK) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EdAT37_CDDZKkbC1U9MDxTYBkR1DVwTn0zxzqEvgrG-5ig?e=6P065H) |
| Video-Swin-S | 63.3 | 61.4 | 65.2 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EdYbp2xp-xFFuolQopvILNMBYRq88ksNjpcv-zKfGzHxbA?e=NqRzTf) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EU6d1rGtkfBFkIoA-xUH2koBwdKW2fPCghYTzzd49KvFLQ?e=FMsJLT) |
| Video-Swin-B | 64.9 | 62.8 | 67.0 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EY3-adM5LptFj--klo5gWgsBhpSDOps91j-C81sBI8i9Hw?e=n19q0w) | [link](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EcSdF-jsBmZLn7iUzc3zXTUBnlfnXDFxPP7mtRbC1ttJwg?e=0wzR0t) |
### Ref-DAVIS17
As described in the paper, we report the results using the model trained on Ref-Youtube-VOS without finetune.
| Backbone| J&F | J | F | Model |
| :----: | :----: | :----: | :----: | :----: |
| ResNet-50 | 58.5 | 55.8 | 61.3 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EVRsV76e78lKuekbMLHgwlsBdG09pRVafEuBPN_wKXjJ1Q?e=SMeZlS) |
| Swin-L | 60.5 | 57.6 | 63.4 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EcCfv66Vl0xDl-rFukByXyQBEFNRTyLeVEKoeWrIvXmjNg?e=GcVTIr) |
| Video-Swin-B | 61.1 | 58.1 | 64.1 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EduJ_zS-Vd5Hn1qexxv5_mYBKX_8kRBOeX6dlfhED_GSwg?e=TxTWHb) |
### A2D-Sentences
The pretrained models are the same as those provided for Ref-Youtube-VOS.
| Backbone| Overall IoU | Mean IoU | mAP | Pretrain | Model |
| :----: | :----: | :----: | :----: | :----: | :----: |
| Video-Swin-T* | 72.3 | 64.1 | 48.6 | - | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EfJs5WPRKfxEvifnIO3impABNgydbiO5qqI_uCF6LYKlCQ?e=mSRLCQ) \| [log](https://connecthkuhk-my.sharepoint.com/:t:/g/personal/wjn922_connect_hku_hk/EVJyHq6zy6ZGuxE--K9nECwB333gFkP9vjXKjh9Mt0otcA?e=Kwnngd) |
| Video-Swin-T | 77.6 | 69.6 | 52.8 | [weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EUNTvEGXlsdLv3gicAbHfN0Ba23kcyy2-Z15IJTDLXKx_A?e=GqAYxT) | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/Ed3po2mJGQZHivGwMJJg8oMBumXm3Ye94oPH6wfRFK1d8A?e=NG2E9c) \| [log](https://connecthkuhk-my.sharepoint.com/:t:/g/personal/wjn922_connect_hku_hk/EfO50qMduZNGvFcYJdRVKzABIJ8ZHhMiKWWvmDM14K9mnw?e=dgInSK) |
| Video-Swin-S | 77.7 | 69.8 | 53.9 | [weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/Eb015DXX1LhDpiDoojxJTu8BBQ8ACicpVS8gwFStRJDK1w?e=NC368q) | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EbAiydTvu41KsMYBEFzy_d8B0Nyy1fIf2tWG7Ao-FYD0Ug?e=tmaVAu) \| [log](https://connecthkuhk-my.sharepoint.com/:t:/g/personal/wjn922_connect_hku_hk/EZl6sHhFDTBMgVGKVp18sqwBouTTnwPdirWId4PR6klTfg?e=17lDVV) |
| Video-Swin-B | 78.6 | 70.3 | 55.0 | [weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/ETDj4aGm_pRMuz8hLBi9Jy0BEFnsco0Uoz5qQEhWrxdNKQ?e=kKImMX) | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EeP1aneDDbBCo9HnMTbNjsgBpMqrgfIzJzF_jVROpZ2GWQ?e=YmkNHC) \| [log](https://connecthkuhk-my.sharepoint.com/:t:/g/personal/wjn922_connect_hku_hk/EUnV-O_IAe5Mkyupsd7NosMBxUg8OjqepmQbpbV0PFB4gQ?e=W14suT) |
\* the model is trained from scratch and set `--num_frames 6`.
### JHMDB-Sentences
As described in the paper, we report the results using the model trained on A2D-Sentences without finetune.
| Backbone| Overall IoU | Mean IoU | mAP | Model |
| :----: | :----: | :----: | :----: | :----: |
| Video-Swin-T* | 70.0 | 69.3 | 39.1 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EfJs5WPRKfxEvifnIO3impABNgydbiO5qqI_uCF6LYKlCQ?e=mSRLCQ) |
| Video-Swin-T | 71.9 | 71.0 | 42.2 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/Ed3po2mJGQZHivGwMJJg8oMBumXm3Ye94oPH6wfRFK1d8A?e=NG2E9c) |
| Video-Swin-S | 72.8 | 71.5 | 42.4 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EbAiydTvu41KsMYBEFzy_d8B0Nyy1fIf2tWG7Ao-FYD0Ug?e=tmaVAu) |
| Video-Swin-B | 73.0 | 71.8 | 43.7 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EeP1aneDDbBCo9HnMTbNjsgBpMqrgfIzJzF_jVROpZ2GWQ?e=YmkNHC) |
\* the model is trained from scratch and set `--num_frames 6`.
### RefCOCO/+/g
We also support evaluate on RefCOCO/+/g validation set by using the pretrained weights (num_frames=1).
Specifically, we measure the [email protected] and overall IoU (oIoU) for REC and RIS tasks, respectively.
REC (referring epression understanding):
| Backbone| RefCOCO | RefCOCO+ | RefCOCOg | Model |
| :----: | :----: | :----: | :----: | :----: |
| ResNet-50 | 85.0 | 79.2 | 79.0 | [weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EepGibYBfyRGt_QedfE9SywBLF3v-bjoxo2R9E9YDqmIcw?e=7J7k1J) |
| ResNet-101 | 85.4 | 75.8 | 79.9 | [weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/ESTAK4QCkMdNkVlQz1dd7GoBo3n_i9K4_FK4YLFBAFvBrg?e=Y3PlD5) |
| Swin-T | 86.7 | 77.2 | 80.6 | [weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/ESdasB6JLydDrs6mf68FrLMBuQBLBF7y_uxdveWl9oK68w?e=H5zeqk) |
| Swin-L | 89.8 | 80.0 | 83.9 | [weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/ESngRLeZfV1LtrlZ7x5cVo4BR5_deWfov4Igt28LZGoDew?e=AVAsws) |
RIS (referring image segmentation):
| Backbone| RefCOCO | RefCOCO+ | RefCOCOg | Model |
| :----: | :----: | :----: | :----: | :----: |
| ResNet-50 | 71.1 | 64.1 | 64.1 | [weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EepGibYBfyRGt_QedfE9SywBLF3v-bjoxo2R9E9YDqmIcw?e=7J7k1J) |
| ResNet-101 | 71.8 | 61.1 | 64.9 | [weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/ESTAK4QCkMdNkVlQz1dd7GoBo3n_i9K4_FK4YLFBAFvBrg?e=Y3PlD5) |
| Swin-T | 72.9 | 62.4 | 66.1 | [weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/ESdasB6JLydDrs6mf68FrLMBuQBLBF7y_uxdveWl9oK68w?e=H5zeqk) |
| Swin-L | 77.1 | 65.8 | 69.3 | [weight](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/ESngRLeZfV1LtrlZ7x5cVo4BR5_deWfov4Igt28LZGoDew?e=AVAsws) |
## Get Started
Please see [Ref-Youtube-VOS](docs/Ref-Youtube-VOS.md), [Ref-DAVIS17](docs/Ref-DAVIS17.md), [A2D-Sentences](docs/A2D-Sentences.md) and [JHMDB-Sentences](docs/JHMDB-Sentences.md) for details.
## Acknowledgement
This repo is based on [Deformable DETR](https://github.com/fundamentalvision/Deformable-DETR) and [VisTR](https://github.com/Epiphqny/VisTR). We also refer to the repositories [MDETR](https://github.com/ashkamath/mdetr) and [MTTR](https://github.com/mttr2021/MTTR). Thanks for their wonderful works.
## Citation
```
@article{wu2022referformer,
title={Language as Queries for Referring Video Object Segmentation},
author={Jiannan Wu and Yi Jiang and Peize Sun and Zehuan Yuan and Ping Luo},
journal={arXiv preprint arXiv:2201.00487},
year={2022},
}
```
|