File size: 8,890 Bytes
8d82201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
"""
Ref-YoutubeVOS data loader
"""
from pathlib import Path

import torch
from torch.autograd.grad_mode import F
from torch.utils.data import Dataset
import datasets.transforms_video as T

import os
from PIL import Image
import json
import numpy as np
import random

from datasets.categories import ytvos_category_dict as category_dict


class YTVOSDataset(Dataset):
    """
    A dataset class for the Refer-Youtube-VOS dataset which was first introduced in the paper:
    "URVOS: Unified Referring Video Object Segmentation Network with a Large-Scale Benchmark"
    (see https://link.springer.com/content/pdf/10.1007/978-3-030-58555-6_13.pdf).
    The original release of the dataset contained both 'first-frame' and 'full-video' expressions. However, the first
    dataset is not publicly available anymore as now only the harder 'full-video' subset is available to download
    through the Youtube-VOS referring video object segmentation competition page at:
    https://competitions.codalab.org/competitions/29139
    Furthermore, for the competition the subset's original validation set, which consists of 507 videos, was split into
    two competition 'validation' & 'test' subsets, consisting of 202 and 305 videos respectively. Evaluation can
    currently only be done on the competition 'validation' subset using the competition's server, as
    annotations were publicly released only for the 'train' subset of the competition.

    """
    def __init__(self, img_folder: Path, ann_file: Path, transforms, return_masks: bool, 
                 num_frames: int, max_skip: int):
        self.img_folder = img_folder     
        self.ann_file = ann_file         
        self._transforms = transforms    
        self.return_masks = return_masks # not used
        self.num_frames = num_frames     
        self.max_skip = max_skip
        # create video meta data
        self.prepare_metas()       

        print('\n video num: ', len(self.videos), ' clip num: ', len(self.metas))  
        print('\n')    
        
        
    def prepare_metas(self):
        # read object information
        with open(os.path.join(str(self.img_folder), 'meta.json'), 'r') as f:
            subset_metas_by_video = json.load(f)['videos']
        
        # read expression data
        with open(str(self.ann_file), 'r') as f:
            subset_expressions_by_video = json.load(f)['videos']
        self.videos = list(subset_expressions_by_video.keys())

        self.metas = []
        for vid in self.videos:
            vid_meta = subset_metas_by_video[vid]
            vid_data = subset_expressions_by_video[vid]
            vid_frames = sorted(vid_data['frames'])
            vid_len = len(vid_frames)
            
            obj_id_to_category = {}
            obj_ids = set()
            for exp_id, exp_dict in vid_data['expressions'].items() :
                obj_id = exp_dict['obj_id']
                category = exp_dict['category']
                obj_ids.add(obj_id)
                obj_id_to_category[obj_id] = category

            obj_ids = list(obj_ids)
            obj_ids.sort()

            start_idx, end_idx = 2, vid_len - 2
            bin_size = (end_idx - start_idx) // 4
            bins = []
            for i in range(4):
                bin_start = start_idx + i * bin_size
                bin_end = bin_start + bin_size if i < 3 else end_idx
                bins.append((bin_start, bin_end))


            # Create meta data for each selected frame
            vid_metas = []
            for bin_start, bin_end in bins:
                frame_idx = random.randint(bin_start, bin_end - 1)  # Randomly sample a frame in the bin
                meta = {
                    'video': vid,
                    'frame_idx': frame_idx,
                    'frames': vid_frames,
                    'bins' : bins,
                    'obj_ids' : obj_ids,
                    'obj_id_to_category': obj_id_to_category  # Map of obj_id to category
                }
                vid_metas.append(meta)
        
            self.metas.append(vid_metas)


    @staticmethod
    def bounding_box(img):
        rows = np.any(img, axis=1)
        cols = np.any(img, axis=0)
        rmin, rmax = np.where(rows)[0][[0, -1]]
        cmin, cmax = np.where(cols)[0][[0, -1]]
        return rmin, rmax, cmin, cmax # y1, y2, x1, x2 
        
    def __len__(self):
        return len(self.metas)


    def __getitem__(self, idx):
        instance_check = False
        while not instance_check:
            vid_metas = self.metas[idx]  # List of metadata dictionaries, one per bin
            video = vid_metas[0]['video']
            frames = vid_metas[0]['frames']
            bins = vid_metas[0]['bins']
            obj_ids = vid_metas[0]['obj_ids']
            obj_id_to_category = vid_metas[0]['obj_id_to_category']
            
            sample_indx = [meta['frame_idx'] for meta in vid_metas]
            annotations = {}

            for frame_indx in sample_indx:
                frame_name = frames[frame_indx]
                img_path = os.path.join(str(self.img_folder), 'JPEGImages', video, frame_name + '.jpg')
                mask_path = os.path.join(str(self.img_folder), 'Annotations', video, frame_name + '.png')

                img = Image.open(img_path).convert('RGB')
                mask = Image.open(mask_path).convert('P')
                mask_np = np.array(mask)

                frame_annotations = {}
                for obj_id in obj_ids:
                    obj_mask = (mask_np == obj_id).astype(np.float32)  # Object-specific binary mask
                    if obj_mask.any():
                        y1, y2, x1, x2 = self.bounding_box(obj_mask)
                        bbox = [x1, y1, x2, y2]  # Bounding box in xyxy format
                    else:
                        bbox = [0, 0, 0, 0]  # No valid object, default bbox

                    frame_annotations[obj_id] = {
                        'category_name': obj_id_to_category[obj_id],
                        'bbox': bbox,
                        'mask': obj_mask
                    }

                annotations[frame_indx] = frame_annotations
                            
            # Prepare the output dictionary
            video_metadata = {
                'bins': bins,
                'annotations': annotations,  # Object annotations per frame
                'frames': sample_indx,  # Sampled frame indices
                'video_path': os.path.join(str(self.img_folder), 'JPEGImages', video)
            }

            # Check if there's at least one valid instance
            valid_check = any(
                any(frame_annotations[obj_id]['bbox'] != [0, 0, 0, 0] for obj_id in frame_annotations)
                for frame_annotations in annotations.values()
            )
            if valid_check:
                instance_check = True
            else:
                idx = random.randint(0, self.__len__() - 1)

        return video_metadata


def make_coco_transforms(image_set, max_size=640):
    normalize = T.Compose([
        T.ToTensor(),
        T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    scales = [288, 320, 352, 392, 416, 448, 480, 512]

    if image_set == 'train':
        return T.Compose([
            T.RandomHorizontalFlip(),
            T.PhotometricDistort(),
            T.RandomSelect(
                T.Compose([
                    T.RandomResize(scales, max_size=max_size),
                    T.Check(),
                ]),
                T.Compose([
                    T.RandomResize([400, 500, 600]),
                    T.RandomSizeCrop(384, 600),
                    T.RandomResize(scales, max_size=max_size),
                    T.Check(),
                ])
            ),
            normalize,
        ])
    
    # we do not use the 'val' set since the annotations are inaccessible
    if image_set == 'val':
        return T.Compose([
            T.RandomResize([360], max_size=640),
            normalize,
        ])

    raise ValueError(f'unknown {image_set}')


def build(image_set, args):
    root = Path(args.ytvos_path)
    assert root.exists(), f'provided YTVOS path {root} does not exist'
    PATHS = {
        "train": (root / "train", root / "meta_expressions" / "train" / "meta_expressions.json"),
        "val": (root / "valid", root / "meta_expressions" / "valid" / "meta_expressions.json"),    # not used actually
    }
    img_folder, ann_file = PATHS[image_set]
    # dataset = YTVOSDataset(img_folder, ann_file, transforms=make_coco_transforms(image_set, max_size=args.max_size), return_masks=args.masks, 
    #                        num_frames=args.num_frames, max_skip=args.max_skip)
    dataset = YTVOSDataset(img_folder, ann_file, transforms=None, return_masks=args.masks, 
                           num_frames=args.num_frames, max_skip=args.max_skip)
    return dataset