File size: 16,494 Bytes
8d82201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import datetime
import os
import time

import torch
import torch.utils.data
from torch import nn

from functools import reduce
import operator
from bert.modeling_bert import BertModel

import torchvision
from lib import segmentation

import transforms as T
import utils
import numpy as np

import torch.nn.functional as F
from data.dataset_refer_zom import Referzom_Dataset, Refzom_DistributedSampler
from data.dataset_refer_bert_rev import ReferDataset
import gc
from collections import OrderedDict
from torch.utils.tensorboard import SummaryWriter


def get_dataset(image_set, transform, args, eval_mode=False):
    if args.dataset == 'ref-zom':
        ds = Referzom_Dataset(args,
                    split=image_set,
                    image_transforms=transform,
                    target_transforms=None,
                    eval_mode=eval_mode)        
    else : 
        ds = ReferDataset(args,
                        split=image_set,
                        image_transforms=transform,
                        target_transforms=None,
                        eval_mode=image_set == 'val'
                        )
    num_classes = 2

    return ds, num_classes


# IoU calculation for validation
# def IoU(pred, gt):
#     pred = pred.argmax(1)

#     intersection = torch.sum(torch.mul(pred, gt))
#     union = torch.sum(torch.add(pred, gt)) - intersection

#     if intersection == 0 or union == 0:
#         iou = 0
#     else:
#         iou = float(intersection) / float(union)

#     return iou, intersection, union

# def computeIoU(pred_seg, gd_seg):
#     I = np.sum(np.logical_and(pred_seg, gd_seg))
#     U = np.sum(np.logical_or(pred_seg, gd_seg))

#     return I, U

def IoU(pred, gt):
    pred = pred.argmax(1)

    intersection = torch.sum(torch.mul(pred, gt))
    union = torch.sum(torch.add(pred, gt)) - intersection

    if intersection == 0 or union == 0:
        iou = 0
    else:
        iou = float(intersection) / float(union)

    return iou, intersection, union


def get_transform(args):
    transforms = [T.Resize(args.img_size, args.img_size),
                  T.ToTensor(),
                  T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
                  ]

    return T.Compose(transforms)


def criterion(input, target):
    weight = torch.FloatTensor([0.9, 1.1]).cuda()
    return nn.functional.cross_entropy(input, target, weight=weight)


def evaluate(model, data_loader, bert_model):
    #print("current model : ", model)
    model.eval()
    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Test:'
    total_its = 0
    acc_ious = 0

    # evaluation variables
    cum_I, cum_U = 0, 0
    eval_seg_iou_list = [.5, .6, .7, .8, .9]
    seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
    seg_total = 0
    mean_IoU = []
    mean_acc = []

    with torch.no_grad():
        for data in metric_logger.log_every(data_loader, 100, header):
            total_its += 1
            # Unpack data
            image, target, source_type, sentences, attentions = data
            image, target, sentences, attentions = (
                image.cuda(non_blocking=True),
                target.cuda(non_blocking=True),
                sentences.cuda(non_blocking=True),
                attentions.cuda(non_blocking=True)
            )

            if total_its == 0 :
                print(sentences.shape, attentions.shape, target.shape, image.shape)

            # Squeeze unnecessary dimensions
            sentences = sentences.squeeze(1)
            attentions = attentions.squeeze(1)

            if total_its == 0 :
                print('after squeezing dim 1')
                print(sentences.shape, attentions.shape)
                
            for j in range(sentences.size(-1)):            
                # Model inference
                if bert_model is not None:
                    last_hidden_states = bert_model(sentences, attention_mask=attentions)[0]
                    embedding = last_hidden_states.permute(0, 2, 1)  # [B, N, 768] -> [B, 768, N]
                    attentions = attentions.unsqueeze(-1)  # [B, N] -> [B, N, 1]
                    output = model(image, embedding, l_mask=attentions)
                else:
                    output = model(image, sentences, l_mask=attentions, is_train=False)

                # Zero target case
                if source_type[0] == 'zero':
                    pred = output.argmax(1)
                    incorrect_num = torch.sum(pred).item()  # Count non-zero predictions
                    acc = 1 if incorrect_num == 0 else 0
                    mean_acc.append(acc)                
                else:
                    # Non-zero target case
                    iou, I, U = IoU(output, target)  # Use the provided IoU function
                    mean_IoU.append(iou)
                    cum_I += I
                    cum_U += U

                    for n_eval_iou in range(len(eval_seg_iou_list)):
                        eval_seg_iou = eval_seg_iou_list[n_eval_iou]
                        seg_correct[n_eval_iou] += (iou >= eval_seg_iou)

                    seg_total += 1

    mIoU = np.mean(mean_IoU)
    mean_acc = np.mean(mean_acc)
    print('Final results:')
    print('Mean IoU is %.2f\n' % (mIoU * 100.))

    results_str = ''
    precs = []
    for n_eval_iou in range(len(eval_seg_iou_list)):
        results_str += '    precision@%s = %.2f\n' % \
                       (str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
        precs.append(seg_correct[n_eval_iou] * 100. / seg_total)
    results_str += '    overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
    results_str += '    mean IoU = %.2f\n' % (mIoU * 100.)
    print(results_str)
    if args.dataset == 'ref-zom':
        print('Mean accuracy for one-to-zero sample is %.2f\n' % (mean_acc*100))

    return mIoU, 100 * cum_I / cum_U, precs


def train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, epoch, print_freq,
                    iterations, bert_model, metric_learning=False, args=None):
    model.train()
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
    header = 'Epoch: [{}]'.format(epoch)
    train_loss = 0
    total_its = 0
    mlw = args.metric_loss_weight
    metric_mode = args.metric_mode
    if not metric_learning:
        mlw = 0

    for data in metric_logger.log_every(data_loader, print_freq, header):
        #print("data : ", data)
        total_its += 1
        
        # Ref-Zom Repro
        image, target, source_type, sentences, attentions = data
        source_type = np.array(source_type)
        target_flag = np.where(source_type=='zero', 0, 1)
        target_flag = torch.tensor(target_flag)
        
        image, target, sentences, target_flag, attentions = image.cuda(non_blocking=True),\
                                            target.cuda(non_blocking=True),\
                                            sentences.cuda(non_blocking=True),\
                                            target_flag.cuda(non_blocking=True),\
                                            attentions.cuda(non_blocking=True)

        sentences = sentences.squeeze(1)
        attentions = attentions.squeeze(1)

        if bert_model is not None:
            last_hidden_states = bert_model(sentences, attention_mask=attentions)[0]  # (6, 10, 768)
            embedding = last_hidden_states.permute(0, 2, 1)  # (B, 768, N_l) to make Conv1d happy
            attentions = attentions.unsqueeze(dim=-1)  # (batch, N_l, 1)
            output = model(image, embedding, l_mask=attentions)

        else:
            output, _ = model(image, sentences, l_mask=attentions)


        loss = criterion(output, target)
        optimizer.zero_grad()  # set_to_none=True is only available in pytorch 1.6+
        loss.backward()
        optimizer.step()
        lr_scheduler.step()

        torch.cuda.synchronize()
        train_loss += loss.item()
        iterations += 1
        metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])

        del image, target, sentences, attentions, loss, output, data
        if bert_model is not None:
            del last_hidden_states, embedding

        gc.collect()
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

    loss_log = {
        'loss': metric_logger.meters['loss'].global_avg
        }
    return iterations, loss_log



def main(args):
    writer = SummaryWriter('./experiments/{}/{}'.format("_".join([args.dataset, args.splitBy]), args.model_id))
    
    dataset, num_classes = get_dataset("train",
                                       get_transform(args=args),
                                       args=args,
                                       eval_mode=False)
    dataset_test, _ = get_dataset(args.split,
                                  get_transform(args=args),
                                  args=args,
                                  eval_mode=True)

    # batch sampler
    print(f"local rank {args.local_rank} / global rank {utils.get_rank()} successfully built train dataset.")
    num_tasks = utils.get_world_size()
    global_rank = utils.get_rank()

    if args.dataset == 'ref-zom':
        train_sampler = Refzom_DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank,
                                                                        shuffle=True)
    else:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank,
                                                                        shuffle=True)        
    test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    # data loader
    data_loader = torch.utils.data.DataLoader(
        dataset, batch_size=args.batch_size,
        sampler=train_sampler, num_workers=args.workers, pin_memory=args.pin_mem, drop_last=True)

    data_loader_test = torch.utils.data.DataLoader(
        dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers)

    # model initialization
    print(args.model)
    model = segmentation.__dict__[args.model](pretrained=args.pretrained_swin_weights,
                                              args=args)
    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    model.cuda()
    model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=True)
    single_model = model.module

    if args.model != 'lavt_one':
        model_class = BertModel
        bert_model = model_class.from_pretrained(args.ck_bert)
        bert_model.pooler = None  # a work-around for a bug in Transformers = 3.0.2 that appears for DistributedDataParallel
        bert_model.cuda()
        bert_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(bert_model)
        bert_model = torch.nn.parallel.DistributedDataParallel(bert_model, device_ids=[args.local_rank])
        single_bert_model = bert_model.module
    else:
        bert_model = None
        single_bert_model = None

    # resume training
    if args.resume:
        checkpoint = torch.load(args.resume, map_location='cpu')
        single_model.load_state_dict(checkpoint['model'])
        if args.model != 'lavt_one':
            single_bert_model.load_state_dict(checkpoint['bert_model'])

    # parameters to optimize
    backbone_no_decay = list()
    backbone_decay = list()
    for name, m in single_model.backbone.named_parameters():
        if 'norm' in name or 'absolute_pos_embed' in name or 'relative_position_bias_table' in name:
            backbone_no_decay.append(m)
        else:
            backbone_decay.append(m)

    if args.model != 'lavt_one':
        params_to_optimize = [
            {'params': backbone_no_decay, 'weight_decay': 0.0},
            {'params': backbone_decay},
            {"params": [p for p in single_model.classifier.parameters() if p.requires_grad]},
            # the following are the parameters of bert
            {"params": reduce(operator.concat,
                              [[p for p in single_bert_model.encoder.layer[i].parameters()
                                if p.requires_grad] for i in range(10)])},
        ]
    else:
        params_to_optimize = [
            {'params': backbone_no_decay, 'weight_decay': 0.0},
            {'params': backbone_decay},
            {"params": [p for p in single_model.classifier.parameters() if p.requires_grad]},
            # the following are the parameters of bert
            {"params": reduce(operator.concat,
                              [[p for p in single_model.text_encoder.encoder.layer[i].parameters()
                                if p.requires_grad] for i in range(10)])},
        ]

    # optimizer
    optimizer = torch.optim.AdamW(params_to_optimize,
                                  lr=args.lr,
                                  weight_decay=args.weight_decay,
                                  amsgrad=args.amsgrad
                                  )

    # learning rate scheduler
    lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
                                                     lambda x: (1 - x / (len(data_loader) * args.epochs)) ** 0.9)

    # housekeeping
    start_time = time.time()
    iterations = 0
    best_oIoU = -0.1

    # resume training (optimizer, lr scheduler, and the epoch)
    if args.resume:
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
        resume_epoch = checkpoint['epoch']
    else:
        resume_epoch = -999

    # training loops
    for epoch in range(max(0, resume_epoch+1), args.epochs):
        data_loader.sampler.set_epoch(epoch)
        itrs_temp, loss_log = train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, epoch, args.print_freq,
                        iterations, bert_model, metric_learning=args.metric_learning, args=args)
        iou, overallIoU, precs = evaluate(model, data_loader_test, bert_model)

        print('Average object IoU {}'.format(iou))
        print('Overall IoU {}'.format(overallIoU))
        save_checkpoint = (best_oIoU < overallIoU)
        if save_checkpoint:
            print('Better epoch: {}\n'.format(epoch))
            if single_bert_model is not None:
                dict_to_save = {'model': single_model.state_dict(), 'bert_model': single_bert_model.state_dict(),
                                'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
                                'lr_scheduler': lr_scheduler.state_dict()}
            else:
                dict_to_save = {'model': single_model.state_dict(),
                                'optimizer': optimizer.state_dict(), 'epoch': epoch, 'args': args,
                                'lr_scheduler': lr_scheduler.state_dict()}

            utils.save_on_master(dict_to_save, os.path.join(args.output_dir,
                                                            'model_best_{}.pth'.format(args.model_id)))
            best_oIoU = overallIoU


        if utils.is_main_process():
            writer.add_scalar('val/mIoU', iou, epoch)
            writer.add_scalar('val/oIoU', overallIoU, epoch)
            writer.add_scalar('val/Prec/50', precs[0], epoch)
            writer.add_scalar('val/Prec/60', precs[1], epoch)
            writer.add_scalar('val/Prec/70', precs[2], epoch)
            writer.add_scalar('val/Prec/80', precs[3], epoch)
            writer.add_scalar('val/Prec/90', precs[4], epoch)
            writer.add_scalar('train/loss', loss_log['loss'], epoch)

    writer.flush()

    # summarize
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))


if __name__ == "__main__":
    from args import get_parser
    parser = get_parser()
    args = parser.parse_args()
    # set up distributed learning
    
    if "LOCAL_RANK" in os.environ:
        local_rank = int(os.environ["LOCAL_RANK"])
    else:
        local_rank = 0  # Default value for non-distributed mode

    print(f"Local Rank: {local_rank}, World Size: {os.environ.get('WORLD_SIZE', '1')}")
    
    utils.init_distributed_mode(args)
    print('Image size: {}'.format(str(args.img_size)))
    print('metric learning flag : ', args.metric_learning)

    print(args)
    main(args)