File size: 15,019 Bytes
8d82201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import os
import sys
import cv2
import math
import glob
import json
import random
import pickle
import numpy as np
import pandas as pd

from PIL import Image, ImageDraw, ImageFilter
from bert.tokenization_bert import BertTokenizer

import albumentations as A
from albumentations.pytorch import ToTensorV2

import torch, gc
import torch.utils.data as data
gc.collect()
torch.cuda.empty_cache()
    
# class aug:
#     num_bgs = 4
#     aug_prob = 0.5
#     num_anchors = 0
#     random_target = False
#     blur = False
#     feature_path = None
#     lower = 0
#     upper = 100
#     move_crs_pnt = False
#     tgt_selection = 'fixed'

class ReferDataset(data.Dataset):

    def __init__(self,
                 args,
                 split='train',
                 eval_mode=False):

        self.classes = []
        self.args = args        
        self.split = split
        self.aug = args.aug
        self.img_sz = args.img_size
         
        each_img_sz = int(args.img_size/math.sqrt(self.aug.num_bgs))
        mean = (0.485, 0.456, 0.406)
        std = (0.229, 0.224, 0.225)
        
        self.resize_bg1 = A.Compose([
            A.Resize(args.img_size, args.img_size, always_apply=True)])
        
        self.resize_bg4 = A.Compose([
            A.Resize(each_img_sz, each_img_sz, always_apply=True)],
            additional_targets={'image1': 'image', 'image2': 'image', 'image3': 'image',
                                'mask1': 'mask', 'mask2': 'mask', 'mask3': 'mask',})
            
        self.transforms = A.Compose([
            A.Normalize(mean=mean, std=std),
            ToTensorV2 (),
        ])
        
        # load annotations
        if args.dataset == 'refcocog' and args.split in ['testA', 'testB']:
            print(f"Easy & Hard Example Experiments - dataset : {args.dataset}, split : {args.split}")
            from refer.refer_test import REFER
            self.refer = REFER(args.refer_data_root, args.dataset, args.splitBy)
        else :
            from refer.refer import REFER
            self.refer = REFER(args.refer_data_root, args.dataset, args.splitBy)
        ref_ids = self.refer.getRefIds(split=self.split)
        img_ids = self.refer.getImgIds(ref_ids)
        all_imgs = self.refer.Imgs
        self.imgs = list(all_imgs[i] for i in img_ids)
        self.ref_ids = ref_ids #[:50] # for debug
        self.ref_id2idx = dict(zip(ref_ids, range(len(ref_ids))))
        self.ref_idx2id = dict(zip(range(len(ref_ids)), ref_ids))

        # tokenizer setting
        # if args.text_encoder.model=='bert':
        self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        # elif args.text_encoder.model=='roberta':
        #     self.tokenizer = RobertaTokenizerFast.from_pretrained(args.text_encoder.tokenizer)
        # elif args.text_encoder.model=='clip':
        #     self.tokenizer = AutoTokenizer.from_pretrained(args.text_encoder.tokenizer)
        # elif args.text_encoder.model=='llama':
        #     self.tokenizer = AutoTokenizer.from_pretrained(args.text_encoder.tokenizer)

        # self.tokenizer.add_special_tokens({'additional_special_tokens': task_tokens})
        # self.tokenizer.add_tokens(position_tokens)

        # if we are testing on a dataset, test all sentences of an object;
        # o/w, we are validating during training, randomly sample one sentence for efficiency
        self.max_tokens = 20
        self.eval_mode = False if split=='train' else True
        self.input_ids = []
        self.attention_masks = []
        for i, r in enumerate(ref_ids):
            ref = self.refer.Refs[r]
            
            sentences_for_ref = []
            attentions_for_ref = []
            for j, (el, sent_id) in enumerate(zip(ref['sentences'], ref['sent_ids'])):
                sentence_raw = el['raw']
                input_ids = self.tokenizer.encode(text=sentence_raw, add_special_tokens=True, max_length=self.max_tokens, truncation=True)
                #input_ids = input_ids[:self.max_tokens]
                padded_input_ids = [0] * self.max_tokens
                padded_input_ids[:len(input_ids)] = input_ids
                attention_mask = [0] * self.max_tokens 
                attention_mask[:len(input_ids)] = [1]*len(input_ids)
                sentences_for_ref.append(padded_input_ids)
                attentions_for_ref.append(attention_mask)

            self.input_ids.append(sentences_for_ref)
            self.attention_masks.append(attentions_for_ref)
            
        if self.aug.blur:
            self.blur = ImageFilter.GaussianBlur(100)

        np.random.seed()

    def get_classes(self):
        return self.classes

    def __len__(self):
        return len(self.ref_ids)

    def __getitem__(self, index):

        # decide mosaic size
        if self.split=='train':
            if self.aug.num_bgs==4:
                aug_prob = self.aug.aug_prob
                num_bgs = np.random.choice([1, 4], p=[1-aug_prob, aug_prob])
            else:
                num_bgs = 1
        else:
            num_bgs = 1    
        
        target_sent_idx = np.random.choice(len(self.input_ids[index])) 
        
        if num_bgs==1:
            ref_ids = []
            sent_idxs = []
            sents = np.array([], dtype='str')
            
        else:
            # if self.aug.feature_path:
            #     num_abgs = 3 #np.random.randint(low=0, high=num_bgs)
            #     item = self.h5.select('scores', where=f'ref_id=={self.ref_ids[index]} & sent_idx=={target_sent_idx}')
            #     score = np.asarray(json.loads(item['sim_scores'].values[0]))
            #     lower = self.aug.lower #np.percentile(score, self.aug.lower)
            #     upper = self.aug.upper #np.percentile(score, self.aug.upper)
            #     top_k_idxs = np.asarray(json.loads(item['top_k_idxs_corpus'].values[0]))
            #     cands = top_k_idxs[np.all([score<upper, score>=lower], axis=0)]
                
            #     try:
            #         idx_list = list(np.random.choice(np.arange(len(cands)),
            #                                             size=num_abgs, replace=False))
            #         cands_picked = [cands[x] for x in idx_list]
            #         #scores_picked = [score[score_mask][x] for x in idx_list]
            #         np.random.shuffle(cands_picked)
                    
            #         ref_ids = [x[0] for x in cands_picked]
            #         sent_idxs = [x[1] for x in cands_picked]
            #         sents = [self.refer.Refs[x[0]]['sentences'][x[1]]['raw'] for x in cands_picked] # 비슷한 문장들 가지고옴
            #     except Exception as e:
            #         ref_ids = list(np.random.choice(self.ref_ids, size=num_bgs-1, replace=False))
            #         sent_idxs = [np.random.choice(len(self.refer.Refs[r]['sentences'])) for r in ref_ids]
            #         sents = np.array([self.refer.Refs[r]['sentences'][sent_idxs[i]]['raw'] for i, r in enumerate(ref_ids)], dtype='str')
            # else:                    
            ref_ids = list(np.random.choice(self.ref_ids, size=num_bgs-1, replace=False))
            sent_idxs = [np.random.choice(len(self.refer.Refs[r]['sentences'])) for r in ref_ids]
            sents = np.array([self.refer.Refs[r]['sentences'][sent_idxs[i]]['raw'] for i, r in enumerate(ref_ids)], dtype='str')
        
        insert_idx = np.random.choice(range(num_bgs))
        ref_ids = np.insert(ref_ids, insert_idx, self.ref_idx2id[index]).astype(int)
        sents = np.insert(sents, insert_idx,
                          self.refer.Refs[ref_ids[insert_idx]]['sentences'][target_sent_idx]['raw'])
        sent_idxs = np.insert(sent_idxs, insert_idx, target_sent_idx).astype(int)

        # pick a target origin
        if self.aug.tgt_selection == 'random':
            target_idx = np.random.choice(range(num_bgs))
            target_ref_idx = self.ref_id2idx[ref_ids[target_idx]]
            target_sent_idx = int(np.random.choice(len(self.input_ids[target_ref_idx])))
        elif self.aug.tgt_selection == 'longest':
            target_idx = np.argmax(list(map(len, sents)))
            target_sent_idx = sent_idxs[target_idx]
        elif self.aug.tgt_selection == 'fixed':
            target_idx = insert_idx
        target_ref_id = ref_ids[target_idx]

        # load items
        imgs, masks = [], []
        for ref_id in ref_ids:
            img_id = self.refer.getImgIds([ref_id])[0]
            img_info = self.refer.Imgs[img_id]
            img_path = os.path.join(self.refer.IMAGE_DIR, img_info['file_name'])
            
            img = Image.open(img_path).convert("RGB")
            imgs.append(np.array(img))
            ref = self.refer.loadRefs(ref_ids=[ref_id])
            mask = np.array(self.refer.getMask(ref[0])['mask'])
            masks.append(mask)
        
        # image resize and apply 4in1 augmentation
        if num_bgs==1:
            resized = self.resize_bg1(image=imgs[0], mask=masks[0])
            imgs, masks = [resized['image']], [resized['mask']]
            img = imgs[0]
        else:
            
            if self.aug.move_crs_pnt:
                crs_y = np.random.randint(0, self.img_sz+1)
                crs_x = np.random.randint(0, self.img_sz+1)
            else:
                crs_y = 480//2 #
                crs_x = 480//2 #

            if crs_y==0 or crs_x==0:
                img1 = np.zeros([0,crs_x,3]) if crs_y==0 else np.zeros([crs_y,0,3])
                mask1 = np.zeros([0,crs_x]) if crs_y==0 else np.zeros([crs_y,0])
            else:
                resize_bg1 = A.Compose([A.Resize(crs_y, crs_x, always_apply=True)])
                temp = resize_bg1(image=imgs[0], mask=masks[0])
                img1 = temp['image']
                mask1 = temp['mask']
            
            if crs_y==0 or crs_x==self.img_sz:
                img2 = np.zeros([0,self.img_sz-crs_x,3]) if crs_y==0 \
                    else np.zeros([crs_y,0,3])
                mask2 = np.zeros([0,self.img_sz-crs_x]) if crs_y==0 \
                    else np.zeros([crs_y,0])
            else:
                resize_bg2 = A.Compose([
                    A.Resize(crs_y, self.img_sz-crs_x, always_apply=True)])
                temp = resize_bg2(image=imgs[1], mask=masks[1])
                img2 = temp['image']
                mask2 = temp['mask']
                
            if crs_y==self.img_sz or crs_x==0:
                img3 = np.zeros([0,crs_x,3]) if crs_y==self.img_sz \
                    else np.zeros([self.img_sz-crs_y,0,3])
                mask3 = np.zeros([0,crs_x]) if crs_y==self.img_sz \
                    else np.zeros([self.img_sz-crs_y,0])
            else:                
                resize_bg3 = A.Compose([
                    A.Resize(self.img_sz-crs_y, crs_x, always_apply=True)])
                temp = resize_bg3(image=imgs[2], mask=masks[2])
                img3 = temp['image']
                mask3 = temp['mask']
                
            if crs_y==self.img_sz or crs_x==self.img_sz:
                img4 = np.zeros([0,self.img_sz-crs_x,3]) if crs_y==self.img_sz \
                    else np.zeros([self.img_sz-crs_y,0,3])
                mask4 = np.zeros([0,self.img_sz-crs_x]) if crs_y==self.img_sz \
                    else np.zeros([self.img_sz-crs_y,0])
            else:
                resize_bg4 = A.Compose([
                    A.Resize(self.img_sz-crs_y,
                             self.img_sz-crs_x, always_apply=True)])
                temp = resize_bg4(image=imgs[3], mask=masks[3])
                img4 = temp['image']
                mask4 = temp['mask']
                
            imgs = [img1, img2, img3, img4]
            masks = [mask1, mask2, mask3, mask4]
            # imgs = [bg1['image'], bg2['image'], bg3['image'], bg4['image']]
            # masks = [bg1['mask'], bg2['mask'], bg3['mask'], bg4['mask']]
            
            # resized = self.resize_bg4(image=imgs[0], mask=masks[0],
            #                           image1=imgs[1], mask1=masks[1],
            #                           image2=imgs[2], mask2=masks[2],
            #                           image3=imgs[3], mask3=masks[3])
            # imgs = [resized['image'], resized['image1'], resized['image2'], resized['image3']]
            # masks = [resized['mask'], resized['mask1'], resized['mask2'], resized['mask3']]
            
            # scale effect ablation
            if self.aug.blur:
                imgs = [np.asarray(Image.fromarray(x).filter(self.blur)) if i!=insert_idx else x for i, x in enumerate(imgs)]
            
            num_rows = num_cols = int(math.sqrt(num_bgs))
            idxs = [(i*num_cols,i*num_cols+num_cols) for i in range(num_rows)]
            img = [np.concatenate(imgs[_from:_to], axis=1) for (_from, _to) in idxs]
            img = np.concatenate(img, axis=0).astype(np.uint8)
            
            masks_arr = []
            for bg_idx in range(num_bgs):
                mask = masks[bg_idx]
                temp = [mask if idx==bg_idx else np.zeros_like(masks[idx]) for idx in range(num_bgs)]
                mask = [np.concatenate(temp[_from:_to], axis=1) for (_from, _to) in idxs]
                mask = np.concatenate(mask, axis=0).astype(np.int32)
                masks_arr.append(mask)
            masks = masks_arr
        
        mask = masks[target_idx]    
        mask = mask.astype(np.uint8)
        mask[mask>0] = 1

        item = self.transforms(image=img, mask=mask)
        img_tensor = item['image']
        target = item['mask'].long()

        target_ref_idx = self.ref_id2idx[target_ref_id]
        if self.eval_mode:
            embedding = []
            att = []
            
            for s in range(len(self.input_ids[target_ref_idx])):
                padded_input_ids = self.input_ids[target_ref_idx][s]
                #padded_input_ids = task_id + pos_id + padded_input_ids
                tensor_embeddings = torch.tensor(padded_input_ids).unsqueeze(0)
                
                attention_mask = self.attention_masks[target_ref_idx][s]
                attention_mask = torch.tensor(attention_mask).unsqueeze(0)
                
                embedding.append(tensor_embeddings.unsqueeze(-1))
                att.append(attention_mask.unsqueeze(-1))
            tensor_embeddings = torch.cat(embedding, dim=-1)
            attention_mask = torch.cat(att, dim=-1)
        else:
            padded_input_ids = self.input_ids[target_ref_idx][target_sent_idx]
            #padded_input_ids = task_id + pos_id + padded_input_ids
            tensor_embeddings = torch.tensor(padded_input_ids).unsqueeze(0)
            attention_mask = self.attention_masks[target_ref_idx][target_sent_idx]
            attention_mask = torch.tensor(attention_mask).unsqueeze(0)

        item = {
            'image': img_tensor,
            'seg_target': target,
            'sentence': tensor_embeddings,
            'attn_mask': attention_mask
        }
        return item