File size: 15,019 Bytes
8d82201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import os
import sys
import cv2
import math
import glob
import json
import random
import pickle
import numpy as np
import pandas as pd
from PIL import Image, ImageDraw, ImageFilter
from bert.tokenization_bert import BertTokenizer
import albumentations as A
from albumentations.pytorch import ToTensorV2
import torch, gc
import torch.utils.data as data
gc.collect()
torch.cuda.empty_cache()
# class aug:
# num_bgs = 4
# aug_prob = 0.5
# num_anchors = 0
# random_target = False
# blur = False
# feature_path = None
# lower = 0
# upper = 100
# move_crs_pnt = False
# tgt_selection = 'fixed'
class ReferDataset(data.Dataset):
def __init__(self,
args,
split='train',
eval_mode=False):
self.classes = []
self.args = args
self.split = split
self.aug = args.aug
self.img_sz = args.img_size
each_img_sz = int(args.img_size/math.sqrt(self.aug.num_bgs))
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
self.resize_bg1 = A.Compose([
A.Resize(args.img_size, args.img_size, always_apply=True)])
self.resize_bg4 = A.Compose([
A.Resize(each_img_sz, each_img_sz, always_apply=True)],
additional_targets={'image1': 'image', 'image2': 'image', 'image3': 'image',
'mask1': 'mask', 'mask2': 'mask', 'mask3': 'mask',})
self.transforms = A.Compose([
A.Normalize(mean=mean, std=std),
ToTensorV2 (),
])
# load annotations
if args.dataset == 'refcocog' and args.split in ['testA', 'testB']:
print(f"Easy & Hard Example Experiments - dataset : {args.dataset}, split : {args.split}")
from refer.refer_test import REFER
self.refer = REFER(args.refer_data_root, args.dataset, args.splitBy)
else :
from refer.refer import REFER
self.refer = REFER(args.refer_data_root, args.dataset, args.splitBy)
ref_ids = self.refer.getRefIds(split=self.split)
img_ids = self.refer.getImgIds(ref_ids)
all_imgs = self.refer.Imgs
self.imgs = list(all_imgs[i] for i in img_ids)
self.ref_ids = ref_ids #[:50] # for debug
self.ref_id2idx = dict(zip(ref_ids, range(len(ref_ids))))
self.ref_idx2id = dict(zip(range(len(ref_ids)), ref_ids))
# tokenizer setting
# if args.text_encoder.model=='bert':
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# elif args.text_encoder.model=='roberta':
# self.tokenizer = RobertaTokenizerFast.from_pretrained(args.text_encoder.tokenizer)
# elif args.text_encoder.model=='clip':
# self.tokenizer = AutoTokenizer.from_pretrained(args.text_encoder.tokenizer)
# elif args.text_encoder.model=='llama':
# self.tokenizer = AutoTokenizer.from_pretrained(args.text_encoder.tokenizer)
# self.tokenizer.add_special_tokens({'additional_special_tokens': task_tokens})
# self.tokenizer.add_tokens(position_tokens)
# if we are testing on a dataset, test all sentences of an object;
# o/w, we are validating during training, randomly sample one sentence for efficiency
self.max_tokens = 20
self.eval_mode = False if split=='train' else True
self.input_ids = []
self.attention_masks = []
for i, r in enumerate(ref_ids):
ref = self.refer.Refs[r]
sentences_for_ref = []
attentions_for_ref = []
for j, (el, sent_id) in enumerate(zip(ref['sentences'], ref['sent_ids'])):
sentence_raw = el['raw']
input_ids = self.tokenizer.encode(text=sentence_raw, add_special_tokens=True, max_length=self.max_tokens, truncation=True)
#input_ids = input_ids[:self.max_tokens]
padded_input_ids = [0] * self.max_tokens
padded_input_ids[:len(input_ids)] = input_ids
attention_mask = [0] * self.max_tokens
attention_mask[:len(input_ids)] = [1]*len(input_ids)
sentences_for_ref.append(padded_input_ids)
attentions_for_ref.append(attention_mask)
self.input_ids.append(sentences_for_ref)
self.attention_masks.append(attentions_for_ref)
if self.aug.blur:
self.blur = ImageFilter.GaussianBlur(100)
np.random.seed()
def get_classes(self):
return self.classes
def __len__(self):
return len(self.ref_ids)
def __getitem__(self, index):
# decide mosaic size
if self.split=='train':
if self.aug.num_bgs==4:
aug_prob = self.aug.aug_prob
num_bgs = np.random.choice([1, 4], p=[1-aug_prob, aug_prob])
else:
num_bgs = 1
else:
num_bgs = 1
target_sent_idx = np.random.choice(len(self.input_ids[index]))
if num_bgs==1:
ref_ids = []
sent_idxs = []
sents = np.array([], dtype='str')
else:
# if self.aug.feature_path:
# num_abgs = 3 #np.random.randint(low=0, high=num_bgs)
# item = self.h5.select('scores', where=f'ref_id=={self.ref_ids[index]} & sent_idx=={target_sent_idx}')
# score = np.asarray(json.loads(item['sim_scores'].values[0]))
# lower = self.aug.lower #np.percentile(score, self.aug.lower)
# upper = self.aug.upper #np.percentile(score, self.aug.upper)
# top_k_idxs = np.asarray(json.loads(item['top_k_idxs_corpus'].values[0]))
# cands = top_k_idxs[np.all([score<upper, score>=lower], axis=0)]
# try:
# idx_list = list(np.random.choice(np.arange(len(cands)),
# size=num_abgs, replace=False))
# cands_picked = [cands[x] for x in idx_list]
# #scores_picked = [score[score_mask][x] for x in idx_list]
# np.random.shuffle(cands_picked)
# ref_ids = [x[0] for x in cands_picked]
# sent_idxs = [x[1] for x in cands_picked]
# sents = [self.refer.Refs[x[0]]['sentences'][x[1]]['raw'] for x in cands_picked] # 비슷한 문장들 가지고옴
# except Exception as e:
# ref_ids = list(np.random.choice(self.ref_ids, size=num_bgs-1, replace=False))
# sent_idxs = [np.random.choice(len(self.refer.Refs[r]['sentences'])) for r in ref_ids]
# sents = np.array([self.refer.Refs[r]['sentences'][sent_idxs[i]]['raw'] for i, r in enumerate(ref_ids)], dtype='str')
# else:
ref_ids = list(np.random.choice(self.ref_ids, size=num_bgs-1, replace=False))
sent_idxs = [np.random.choice(len(self.refer.Refs[r]['sentences'])) for r in ref_ids]
sents = np.array([self.refer.Refs[r]['sentences'][sent_idxs[i]]['raw'] for i, r in enumerate(ref_ids)], dtype='str')
insert_idx = np.random.choice(range(num_bgs))
ref_ids = np.insert(ref_ids, insert_idx, self.ref_idx2id[index]).astype(int)
sents = np.insert(sents, insert_idx,
self.refer.Refs[ref_ids[insert_idx]]['sentences'][target_sent_idx]['raw'])
sent_idxs = np.insert(sent_idxs, insert_idx, target_sent_idx).astype(int)
# pick a target origin
if self.aug.tgt_selection == 'random':
target_idx = np.random.choice(range(num_bgs))
target_ref_idx = self.ref_id2idx[ref_ids[target_idx]]
target_sent_idx = int(np.random.choice(len(self.input_ids[target_ref_idx])))
elif self.aug.tgt_selection == 'longest':
target_idx = np.argmax(list(map(len, sents)))
target_sent_idx = sent_idxs[target_idx]
elif self.aug.tgt_selection == 'fixed':
target_idx = insert_idx
target_ref_id = ref_ids[target_idx]
# load items
imgs, masks = [], []
for ref_id in ref_ids:
img_id = self.refer.getImgIds([ref_id])[0]
img_info = self.refer.Imgs[img_id]
img_path = os.path.join(self.refer.IMAGE_DIR, img_info['file_name'])
img = Image.open(img_path).convert("RGB")
imgs.append(np.array(img))
ref = self.refer.loadRefs(ref_ids=[ref_id])
mask = np.array(self.refer.getMask(ref[0])['mask'])
masks.append(mask)
# image resize and apply 4in1 augmentation
if num_bgs==1:
resized = self.resize_bg1(image=imgs[0], mask=masks[0])
imgs, masks = [resized['image']], [resized['mask']]
img = imgs[0]
else:
if self.aug.move_crs_pnt:
crs_y = np.random.randint(0, self.img_sz+1)
crs_x = np.random.randint(0, self.img_sz+1)
else:
crs_y = 480//2 #
crs_x = 480//2 #
if crs_y==0 or crs_x==0:
img1 = np.zeros([0,crs_x,3]) if crs_y==0 else np.zeros([crs_y,0,3])
mask1 = np.zeros([0,crs_x]) if crs_y==0 else np.zeros([crs_y,0])
else:
resize_bg1 = A.Compose([A.Resize(crs_y, crs_x, always_apply=True)])
temp = resize_bg1(image=imgs[0], mask=masks[0])
img1 = temp['image']
mask1 = temp['mask']
if crs_y==0 or crs_x==self.img_sz:
img2 = np.zeros([0,self.img_sz-crs_x,3]) if crs_y==0 \
else np.zeros([crs_y,0,3])
mask2 = np.zeros([0,self.img_sz-crs_x]) if crs_y==0 \
else np.zeros([crs_y,0])
else:
resize_bg2 = A.Compose([
A.Resize(crs_y, self.img_sz-crs_x, always_apply=True)])
temp = resize_bg2(image=imgs[1], mask=masks[1])
img2 = temp['image']
mask2 = temp['mask']
if crs_y==self.img_sz or crs_x==0:
img3 = np.zeros([0,crs_x,3]) if crs_y==self.img_sz \
else np.zeros([self.img_sz-crs_y,0,3])
mask3 = np.zeros([0,crs_x]) if crs_y==self.img_sz \
else np.zeros([self.img_sz-crs_y,0])
else:
resize_bg3 = A.Compose([
A.Resize(self.img_sz-crs_y, crs_x, always_apply=True)])
temp = resize_bg3(image=imgs[2], mask=masks[2])
img3 = temp['image']
mask3 = temp['mask']
if crs_y==self.img_sz or crs_x==self.img_sz:
img4 = np.zeros([0,self.img_sz-crs_x,3]) if crs_y==self.img_sz \
else np.zeros([self.img_sz-crs_y,0,3])
mask4 = np.zeros([0,self.img_sz-crs_x]) if crs_y==self.img_sz \
else np.zeros([self.img_sz-crs_y,0])
else:
resize_bg4 = A.Compose([
A.Resize(self.img_sz-crs_y,
self.img_sz-crs_x, always_apply=True)])
temp = resize_bg4(image=imgs[3], mask=masks[3])
img4 = temp['image']
mask4 = temp['mask']
imgs = [img1, img2, img3, img4]
masks = [mask1, mask2, mask3, mask4]
# imgs = [bg1['image'], bg2['image'], bg3['image'], bg4['image']]
# masks = [bg1['mask'], bg2['mask'], bg3['mask'], bg4['mask']]
# resized = self.resize_bg4(image=imgs[0], mask=masks[0],
# image1=imgs[1], mask1=masks[1],
# image2=imgs[2], mask2=masks[2],
# image3=imgs[3], mask3=masks[3])
# imgs = [resized['image'], resized['image1'], resized['image2'], resized['image3']]
# masks = [resized['mask'], resized['mask1'], resized['mask2'], resized['mask3']]
# scale effect ablation
if self.aug.blur:
imgs = [np.asarray(Image.fromarray(x).filter(self.blur)) if i!=insert_idx else x for i, x in enumerate(imgs)]
num_rows = num_cols = int(math.sqrt(num_bgs))
idxs = [(i*num_cols,i*num_cols+num_cols) for i in range(num_rows)]
img = [np.concatenate(imgs[_from:_to], axis=1) for (_from, _to) in idxs]
img = np.concatenate(img, axis=0).astype(np.uint8)
masks_arr = []
for bg_idx in range(num_bgs):
mask = masks[bg_idx]
temp = [mask if idx==bg_idx else np.zeros_like(masks[idx]) for idx in range(num_bgs)]
mask = [np.concatenate(temp[_from:_to], axis=1) for (_from, _to) in idxs]
mask = np.concatenate(mask, axis=0).astype(np.int32)
masks_arr.append(mask)
masks = masks_arr
mask = masks[target_idx]
mask = mask.astype(np.uint8)
mask[mask>0] = 1
item = self.transforms(image=img, mask=mask)
img_tensor = item['image']
target = item['mask'].long()
target_ref_idx = self.ref_id2idx[target_ref_id]
if self.eval_mode:
embedding = []
att = []
for s in range(len(self.input_ids[target_ref_idx])):
padded_input_ids = self.input_ids[target_ref_idx][s]
#padded_input_ids = task_id + pos_id + padded_input_ids
tensor_embeddings = torch.tensor(padded_input_ids).unsqueeze(0)
attention_mask = self.attention_masks[target_ref_idx][s]
attention_mask = torch.tensor(attention_mask).unsqueeze(0)
embedding.append(tensor_embeddings.unsqueeze(-1))
att.append(attention_mask.unsqueeze(-1))
tensor_embeddings = torch.cat(embedding, dim=-1)
attention_mask = torch.cat(att, dim=-1)
else:
padded_input_ids = self.input_ids[target_ref_idx][target_sent_idx]
#padded_input_ids = task_id + pos_id + padded_input_ids
tensor_embeddings = torch.tensor(padded_input_ids).unsqueeze(0)
attention_mask = self.attention_masks[target_ref_idx][target_sent_idx]
attention_mask = torch.tensor(attention_mask).unsqueeze(0)
item = {
'image': img_tensor,
'seg_target': target,
'sentence': tensor_embeddings,
'attn_mask': attention_mask
}
return item
|