File size: 22,902 Bytes
8d82201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import contextlib
import io
import logging
import numpy as np
import os
import random
import copy
import pycocotools.mask as mask_util
from fvcore.common.timer import Timer
from PIL import Image
import torch.utils.data as data

from detectron2.structures import Boxes, BoxMode, PolygonMasks, RotatedBoxes
from detectron2.utils.file_io import PathManager

import time
import copy
import logging
import torch
import math

from detectron2.config import configurable
from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T

# from transformers import BertTokenizer
from bert.tokenization_bert import BertTokenizer
from pycocotools import mask as coco_mask
from data.utils import convert_coco_poly_to_mask, build_transform_train, build_transform_test
from .utils import cosine_annealing
"""
This file contains functions to parse RefCOCO-format annotations into dicts in "Detectron2 format".
"""


import albumentations as A
from albumentations.pytorch import ToTensorV2
from PIL import Image, ImageDraw, ImageFilter
import lmdb
import pyarrow as pa


  
def loads_pyarrow(buf):
    return pa.deserialize(buf)



logger = logging.getLogger(__name__)

__all__ = ["load_refcoco_json"]

class GReferDataset(data.Dataset):
    def __init__(self, 
                 args, refer_root, dataset_name, splitby, split, image_root,
                 img_format="RGB", merge=True,
                 extra_annotation_keys=None, extra_refer_keys=None):
        
        self.refer_root = refer_root
        self.dataset_name = dataset_name
        self.splitby = splitby
        self.split = split
        self.image_root = image_root
        self.extra_annotation_keys = extra_annotation_keys
        self.extra_refer_keys = extra_refer_keys
        self.img_format = img_format
        self.merge = merge
        self.max_tokens = 20
        self.tokenizer = BertTokenizer.from_pretrained(args.bert_tokenizer)
        
        if split == "train":
            self.tfm_gens = build_transform_train(args)
        elif split in ["val", "test", "testA", "testB"]:
            self.tfm_gens = build_transform_test(args)
    
        if self.dataset_name == 'refcocop':
            self.dataset_name = 'refcoco+'
        if self.dataset_name == 'refcoco' or self.dataset_name == 'refcoco+':
            self.splitby == 'unc'
        if self.dataset_name == 'refcocog':
            assert self.splitby == 'umd' or self.splitby == 'google'

        dataset_id = '_'.join([self.dataset_name, self.splitby, self.split])
        
        from refer.grefer import G_REFER
        logger.info('Loading dataset {} ({}-{}) ...'.format(self.dataset_name, self.splitby, self.split))
        logger.info('Refcoco root: {}'.format(self.refer_root))
        timer = Timer()
        self.refer_root = PathManager.get_local_path(self.refer_root)
        with contextlib.redirect_stdout(io.StringIO()):
            self.refer = G_REFER(data_root=self.refer_root,
                            dataset=self.dataset_name,
                            splitBy=self.splitby)
        if timer.seconds() > 1:
            logger.info("Loading {} takes {:.2f} seconds.".format(dataset_id, timer.seconds()))
        
        self.ref_ids = self.refer.getRefIds(split=self.split)
        self.img_ids = self.refer.getImgIds(self.ref_ids)
        self.refs = self.refer.loadRefs(self.ref_ids)
        imgs = [self.refer.loadImgs(ref['image_id'])[0] for ref in self.refs]
        anns = [self.refer.loadAnns(ref['ann_id']) for ref in self.refs]
        self.imgs_refs_anns = list(zip(imgs, self.refs, anns))

        logger.info("Loaded {} images, {} referring object sets in G_RefCOCO format from {}".format(len(self.img_ids), len(self.ref_ids), dataset_id))


        self.dataset_dicts = []

        ann_keys = ["iscrowd", "bbox", "category_id"] + (self.extra_annotation_keys or [])
        ref_keys = ["raw", "sent_id"] + (self.extra_refer_keys or [])

        ann_lib = {}

        NT_count = 0
        MT_count = 0

        for idx, (img_dict, ref_dict, anno_dicts) in enumerate(self.imgs_refs_anns):
            record = {}
            record['id'] = idx
            record["source"] = 'grefcoco'
            record["file_name"] = os.path.join(self.image_root, img_dict["file_name"])
            record["height"] = img_dict["height"]
            record["width"] = img_dict["width"]
            image_id = record["image_id"] = img_dict["id"]

            # Check that information of image, ann and ref match each other
            # This fails only when the data parsing logic or the annotation file is buggy.
            assert ref_dict['image_id'] == image_id
            assert ref_dict['split'] == self.split
            if not isinstance(ref_dict['ann_id'], list):
                ref_dict['ann_id'] = [ref_dict['ann_id']]

            # No target samples
            if None in anno_dicts:
                assert anno_dicts == [None]
                assert ref_dict['ann_id'] == [-1]
                record['empty'] = True
                obj = {key: None for key in ann_keys if key in ann_keys}
                obj["bbox_mode"] = BoxMode.XYWH_ABS
                obj["empty"] = True
                obj = [obj]

            # Multi target samples
            else:
                record['empty'] = False
                obj = []
                for anno_dict in anno_dicts:
                    ann_id = anno_dict['id']
                    if anno_dict['iscrowd']:
                        continue
                    assert anno_dict["image_id"] == image_id
                    assert ann_id in ref_dict['ann_id']

                    if ann_id in ann_lib:
                        ann = ann_lib[ann_id]
                    else:
                        ann = {key: anno_dict[key] for key in ann_keys if key in anno_dict}
                        ann["bbox_mode"] = BoxMode.XYWH_ABS
                        ann["empty"] = False
    
                        segm = anno_dict.get("segmentation", None)
                        assert segm  # either list[list[float]] or dict(RLE)
                        if isinstance(segm, dict):
                            if isinstance(segm["counts"], list):
                                # convert to compressed RLE
                                segm = mask_util.frPyObjects(segm, *segm["size"])
                        else:
                            # filter out invalid polygons (< 3 points)
                            segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
                            if len(segm) == 0:
                                num_instances_without_valid_segmentation += 1
                                continue  # ignore this instance
                        ann["segmentation"] = segm
                        ann_lib[ann_id] = ann

                    obj.append(ann)

            record["annotations"] = obj

            # Process referring expressions
            sents = ref_dict['sentences']
            for sent in sents:
                ref_record = record.copy()
                ref = {key: sent[key] for key in ref_keys if key in sent}
                ref["ref_id"] = ref_dict["ref_id"]
                ref_record["sentence"] = ref
                self.dataset_dicts.append(ref_record)
        #         if ref_record['empty']:
        #             NT_count += 1
        #         else:
        #             MT_count += 1

        # logger.info("NT samples: %d, MT samples: %d", NT_count, MT_count)

        # Debug mode
        # return self.dataset_dicts[:100]
        
        # grefcoco
        self.classes = []
        self.aug = args.aug  
        self.bert_type = args.bert_tokenizer   
        
        self.img_sz = args.img_size
         
        each_img_sz = int(args.img_size/math.sqrt(self.aug.num_bgs))
        mean = (0.485, 0.456, 0.406)
        std = (0.229, 0.224, 0.225)
        
        self.resize_bg1 = A.Compose([
            A.Resize(args.img_size, args.img_size, always_apply=True)])
        
        self.resize_bg4 = A.Compose([
            A.Resize(each_img_sz, each_img_sz, always_apply=True)],
            additional_targets={'image1': 'image', 'image2': 'image', 'image3': 'image',
                                'mask1': 'mask', 'mask2': 'mask', 'mask3': 'mask',})
            
        self.transforms = A.Compose([
            A.Normalize(mean=mean, std=std),
            ToTensorV2 (),
        ])
        
        # ref_ids = self.refer.getRefIds(split=self.split)
        # img_ids = self.refer.getImgIds(ref_ids)
        all_imgs = self.refer.Imgs
        self.imgs = list(all_imgs[i] for i in self.img_ids)
        # self.ref_ids = ref_ids#[:500]
        self.ref_id2idx = dict(zip(self.ref_ids, range(len(self.ref_ids))))
        self.ref_idx2id = dict(zip(range(len(self.ref_ids)), self.ref_ids))
        self.img2refs = self.refer.imgToRefs


        # self.tokenizer.add_special_tokens({'additional_special_tokens': task_tokens})
        # self.tokenizer.add_tokens(position_tokens)

        # if we are testing on a dataset, test all sentences of an object;
        # o/w, we are validating during training, randomly sample one sentence for efficiency
        self.max_tokens = 20
        self.is_train = True if split == "train" else False
        self.input_ids = []
        self.attention_masks = []
        for i, r in enumerate(self.ref_ids):
            ref = self.refer.Refs[r]
            
            sentences_for_ref = []
            attentions_for_ref = []
            for j, (el, sent_id) in enumerate(zip(ref['sentences'], ref['sent_ids'])):
                sentence_raw = el['raw']
                input_ids = self.tokenizer.encode(text=sentence_raw, add_special_tokens=True, max_length=self.max_tokens, truncation=True)
                #input_ids = input_ids[:self.max_tokens]
                padded_input_ids = [0] * self.max_tokens
                padded_input_ids[:len(input_ids)] = input_ids
                attention_mask = [0] * self.max_tokens 
                attention_mask[:len(input_ids)] = [1]*len(input_ids)
                sentences_for_ref.append(padded_input_ids)
                attentions_for_ref.append(attention_mask)

            self.input_ids.append(sentences_for_ref)
            self.attention_masks.append(attentions_for_ref)
            
        if self.aug.blur:
            self.blur = ImageFilter.GaussianBlur(100)
            
        # Load mldb data / temptative
        lmdb_path = f'/data2/dataset/RefCOCO/logit_db/grefcoco/grefcoco.lmdb'
        # self.lmdb_dict = read_from_lmdb(lmdb_dir)
        self.lmdb_env = lmdb.open(
            lmdb_path, subdir=False, max_readers=32,
            readonly=True, lock=False,
            readahead=False, meminit=False
        )
        with self.lmdb_env.begin(write=False) as txn:
            self.length = loads_pyarrow(txn.get(b'__len__'))
            self.keys = loads_pyarrow(txn.get(b'__keys__'))
            
        self.epoch = 0
        np.random.seed()
        
        
    
    @staticmethod
    def _merge_masks(x):
        return x.sum(dim=0, keepdim=True).clamp(max=1)

    def __len__(self):
        return len(self.dataset_dicts)
    
    
    def __getitem__(self, index):
        
        refid = self.ref_idx2id[index]
        with self.lmdb_env.begin(write=False) as txn:
            byteflow = txn.get(self.keys[refid])
        lmdb_dict = loads_pyarrow(byteflow)
            
        
        dataset_dict = copy.deepcopy(self.dataset_dicts[index])
        img_id = dataset_dict["image_id"]
        index = dataset_dict["id"]
        
        # decide mosaic size
        if self.split=='train':
            if self.aug.num_bgs==4:
                aug_prob = self.aug.aug_prob # 0.6
                if self.epoch < self.aug.retrieval_epoch :
                    num_bgs = np.random.choice([1, 4], p=[1-aug_prob, aug_prob])
                else :
                    rand_prob = cosine_annealing(epoch=self.epoch-self.aug.retrieval_epoch, \
                                                n_epochs=self.args.epochs-self.aug.retrieval_epoch, 
                                                n_cycles=1, lrate_max=aug_prob)
                    retr_prob = aug_prob-rand_prob
                    choice = np.random.choice(['one', 'random', 'retrieval'], p=[1-aug_prob, rand_prob, retr_prob])
                    if choice == 'one':
                        num_bgs = 1
                    else :
                        num_bgs = 4
            else:
                num_bgs = 1
        else:
            num_bgs = 1   
        
        
        target_sent_idx = np.random.choice(len(self.input_ids[index])) 
        ref_id = self.ref_idx2id[index]
        insert_idx = np.random.choice(range(num_bgs))
        
        if num_bgs==1:
            ref_ids = []
            sent_idxs = []
            sents = np.array([], dtype='str')
            img_ids = [self.refer.Refs[ref_id]['image_id']]
            
        else:  
            if self.epoch >= self.aug.retrieval_epoch :
                sent_id = list(lmdb_dict.keys())[target_sent_idx]
                img_ids = list(np.random.choice(lmdb_dict[sent_id], size=num_bgs-1, replace=True))
                img_ids = np.insert(img_ids, insert_idx, self.refer.Refs[ref_id]['image_id'])
                                    
            ref_ids = list(np.random.choice(self.ref_ids, size=num_bgs-1, replace=False))
            sent_idxs = [np.random.choice(len(self.refer.Refs[r]['sentences'])) for r in ref_ids]
            sents = np.array([self.refer.Refs[r]['sentences'][sent_idxs[i]]['raw'] for i, r in enumerate(ref_ids)], dtype='str')
        
        ref_ids = np.insert(ref_ids, insert_idx, self.ref_idx2id[index]).astype(int)
        sents = np.insert(sents, insert_idx,
                          self.refer.Refs[ref_ids[insert_idx]]['sentences'][target_sent_idx]['raw'])
        sent_idxs = np.insert(sent_idxs, insert_idx, target_sent_idx).astype(int)
        
        # pick a target origin
        if self.aug.tgt_selection == 'random':
            target_idx = np.random.choice(range(num_bgs))
            target_ref_idx = self.ref_id2idx[ref_ids[target_idx]]
            target_sent_idx = int(np.random.choice(len(self.input_ids[target_ref_idx])))
        elif self.aug.tgt_selection == 'longest':
            target_idx = np.argmax(list(map(len, sents)))
            target_sent_idx = sent_idxs[target_idx]
        elif self.aug.tgt_selection == 'fixed':
            target_idx = insert_idx
        # target_ref_id = ref_ids[target_idx]
        target_ref_id = self.ref_idx2id[index]

        # load items
        imgs, masks = [], []
        if self.epoch >= self.aug.retrieval_epoch :
            for img_id in img_ids:
                img_info = self.refer.Imgs[img_id]
                img_path = os.path.join(self.refer.IMAGE_DIR, img_info['file_name'])
                img = Image.open(img_path).convert("RGB")
                imgs.append(np.array(img))
                ref = self.refer.imgToRefs[img_id][0]
                # if self.dataset_name in ['refcoco', 'refcoco+', 'refcocog']:
                #     mask = np.array(self.refer.getMask(ref)['mask'])
                # elif self.dataset_name in ['grefcoco'] : 
                mask = self.refer.getMaskByRef(ref, ref['ref_id'], self.merge)['mask']
                masks.append(mask)
                
        else :    
            for ref_id in ref_ids:
                img_id = self.refer.getImgIds([ref_id])[0]
                img_info = self.refer.Imgs[img_id]
                img_path = os.path.join(self.refer.IMAGE_DIR, img_info['file_name'])
                img = Image.open(img_path).convert("RGB")
                imgs.append(np.array(img))
                ref = self.refer.loadRefs(ref_ids=[ref_id])
                # if self.dataset_name in ['refcoco', 'refcoco+', 'refcocog']:
                #     mask = np.array(self.refer.getMask(ref[0])['mask'])
                # elif self.dataset_name in ['grefcoco'] : 
                mask = self.refer.getMaskByRef(ref[0], ref_id, self.merge)['mask']
                masks.append(mask)
        
        # image resize and apply 4in1 augmentation
        if num_bgs==1:
            resized = self.resize_bg1(image=imgs[0], mask=masks[0])
            imgs, masks = [resized['image']], [resized['mask']]
            img = imgs[0]
        else:
            if self.aug.move_crs_pnt:
                crs_y = np.random.randint(0, self.img_sz+1)
                crs_x = np.random.randint(0, self.img_sz+1)
            else:
                crs_y = 480//2 #
                crs_x = 480//2 #

            if crs_y==0 or crs_x==0:
                img1 = np.zeros([0,crs_x,3]) if crs_y==0 else np.zeros([crs_y,0,3])
                mask1 = np.zeros([0,crs_x]) if crs_y==0 else np.zeros([crs_y,0])
            else:
                resize_bg1 = A.Compose([A.Resize(crs_y, crs_x, always_apply=True)])
                temp = resize_bg1(image=imgs[0], mask=masks[0])
                img1 = temp['image']
                mask1 = temp['mask']
            
            if crs_y==0 or crs_x==self.img_sz:
                img2 = np.zeros([0,self.img_sz-crs_x,3]) if crs_y==0 \
                    else np.zeros([crs_y,0,3])
                mask2 = np.zeros([0,self.img_sz-crs_x]) if crs_y==0 \
                    else np.zeros([crs_y,0])
            else:
                resize_bg2 = A.Compose([
                    A.Resize(crs_y, self.img_sz-crs_x, always_apply=True)])
                temp = resize_bg2(image=imgs[1], mask=masks[1])
                img2 = temp['image']
                mask2 = temp['mask']
                
            if crs_y==self.img_sz or crs_x==0:
                img3 = np.zeros([0,crs_x,3]) if crs_y==self.img_sz \
                    else np.zeros([self.img_sz-crs_y,0,3])
                mask3 = np.zeros([0,crs_x]) if crs_y==self.img_sz \
                    else np.zeros([self.img_sz-crs_y,0])
            else:                
                resize_bg3 = A.Compose([
                    A.Resize(self.img_sz-crs_y, crs_x, always_apply=True)])
                temp = resize_bg3(image=imgs[2], mask=masks[2])
                img3 = temp['image']
                mask3 = temp['mask']
                
            if crs_y==self.img_sz or crs_x==self.img_sz:
                img4 = np.zeros([0,self.img_sz-crs_x,3]) if crs_y==self.img_sz \
                    else np.zeros([self.img_sz-crs_y,0,3])
                mask4 = np.zeros([0,self.img_sz-crs_x]) if crs_y==self.img_sz \
                    else np.zeros([self.img_sz-crs_y,0])
            else:
                resize_bg4 = A.Compose([
                    A.Resize(self.img_sz-crs_y,
                             self.img_sz-crs_x, always_apply=True)])
                temp = resize_bg4(image=imgs[3], mask=masks[3])
                img4 = temp['image']
                mask4 = temp['mask']
                
            imgs = [img1, img2, img3, img4]
            masks = [mask1, mask2, mask3, mask4]
            
            # scale effect ablation
            if self.aug.blur:
                imgs = [np.asarray(Image.fromarray(x).filter(self.blur)) if i!=insert_idx else x for i, x in enumerate(imgs)]
            
            num_rows = num_cols = int(math.sqrt(num_bgs))
            idxs = [(i*num_cols,i*num_cols+num_cols) for i in range(num_rows)]
            img = [np.concatenate(imgs[_from:_to], axis=1) for (_from, _to) in idxs]
            img = np.concatenate(img, axis=0).astype(np.uint8)
            
            masks_arr = []
            for bg_idx in range(num_bgs):
                mask = masks[bg_idx]
                temp = [mask if idx==bg_idx else np.zeros_like(masks[idx]) for idx in range(num_bgs)]
                mask = [np.concatenate(temp[_from:_to], axis=1) for (_from, _to) in idxs]
                mask = np.concatenate(mask, axis=0).astype(np.int32)
                masks_arr.append(mask)
            masks = masks_arr
        
        mask = masks[target_idx]    
        mask = mask.astype(np.uint8)
        mask[mask>0] = 1

        item = self.transforms(image=img, mask=mask)
        img_tensor = item['image']
        target = item['mask'].long()

        target_ref_idx = self.ref_id2idx[target_ref_id]
        # if self.is_train:
        #     embedding = []
        #     att = []
        #     for s in range(len(self.input_ids[target_ref_idx])):
        #         padded_input_ids = self.input_ids[target_ref_idx][s]
        #         tensor_embeddings = torch.tensor(padded_input_ids).unsqueeze(0)
        #         attention_mask = self.attention_masks[target_ref_idx][s]
        #         attention_mask = torch.tensor(attention_mask).unsqueeze(0)
        #         embedding.append(tensor_embeddings.unsqueeze(-1))
        #         att.append(attention_mask.unsqueeze(-1))
        #     tensor_embeddings = torch.cat(embedding, dim=-1)
        #     attention_mask = torch.cat(att, dim=-1)
        # else:
        padded_input_ids = self.input_ids[target_ref_idx][target_sent_idx]
        tensor_embeddings = torch.tensor(padded_input_ids).unsqueeze(0)
        attention_mask = self.attention_masks[target_ref_idx][target_sent_idx]
        attention_mask = torch.tensor(attention_mask).unsqueeze(0)

        empty = dataset_dict.get("empty", False)
        dataset_dict["empty"] = empty
        dataset_dict['image'] = img_tensor
        dataset_dict['gt_masks'] = target.unsqueeze(0)
        dataset_dict['lang_tokens'] = tensor_embeddings
        dataset_dict['lang_mask'] = attention_mask
        # dataset_dict["gt_mask_merged"] = self._merge_masks(target) if self.merge else None
        dataset_dict["gt_mask_merged"] = target.unsqueeze(0)

        
        item = {
            'image': img_tensor.float(),
            'seg_target': target.long(),
            'sentence': tensor_embeddings,
            'attn_mask': attention_mask,
        }
        return item

    


    




if __name__ == "__main__":
    """
    Test the COCO json dataset loader.

    Usage:
        python -m detectron2.data.datasets.coco \
            path/to/json path/to/image_root dataset_name

        "dataset_name" can be "coco_2014_minival_100", or other
        pre-registered ones
    """
    from detectron2.utils.logger import setup_logger
    from detectron2.utils.visualizer import Visualizer
    import detectron2.data.datasets  # noqa # add pre-defined metadata
    import sys

    REFCOCO_PATH = '/data2/projects/donghwa/RIS/ReLA/datasets'
    COCO_TRAIN_2014_IMAGE_ROOT = '/data2/projects/donghwa/RIS/ReLA/datasets/images'
    REFCOCO_DATASET = 'grefcoco'
    REFCOCO_SPLITBY = 'unc'
    REFCOCO_SPLIT = 'train'

    logger = setup_logger(name=__name__)
    dicts = load_grefcoco_json(REFCOCO_PATH, REFCOCO_DATASET, REFCOCO_SPLITBY, REFCOCO_SPLIT, COCO_TRAIN_2014_IMAGE_ROOT)
    logger.info("Done loading {} samples.".format(len(dicts)))