File size: 22,902 Bytes
8d82201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
import contextlib
import io
import logging
import numpy as np
import os
import random
import copy
import pycocotools.mask as mask_util
from fvcore.common.timer import Timer
from PIL import Image
import torch.utils.data as data
from detectron2.structures import Boxes, BoxMode, PolygonMasks, RotatedBoxes
from detectron2.utils.file_io import PathManager
import time
import copy
import logging
import torch
import math
from detectron2.config import configurable
from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T
# from transformers import BertTokenizer
from bert.tokenization_bert import BertTokenizer
from pycocotools import mask as coco_mask
from data.utils import convert_coco_poly_to_mask, build_transform_train, build_transform_test
from .utils import cosine_annealing
"""
This file contains functions to parse RefCOCO-format annotations into dicts in "Detectron2 format".
"""
import albumentations as A
from albumentations.pytorch import ToTensorV2
from PIL import Image, ImageDraw, ImageFilter
import lmdb
import pyarrow as pa
def loads_pyarrow(buf):
return pa.deserialize(buf)
logger = logging.getLogger(__name__)
__all__ = ["load_refcoco_json"]
class GReferDataset(data.Dataset):
def __init__(self,
args, refer_root, dataset_name, splitby, split, image_root,
img_format="RGB", merge=True,
extra_annotation_keys=None, extra_refer_keys=None):
self.refer_root = refer_root
self.dataset_name = dataset_name
self.splitby = splitby
self.split = split
self.image_root = image_root
self.extra_annotation_keys = extra_annotation_keys
self.extra_refer_keys = extra_refer_keys
self.img_format = img_format
self.merge = merge
self.max_tokens = 20
self.tokenizer = BertTokenizer.from_pretrained(args.bert_tokenizer)
if split == "train":
self.tfm_gens = build_transform_train(args)
elif split in ["val", "test", "testA", "testB"]:
self.tfm_gens = build_transform_test(args)
if self.dataset_name == 'refcocop':
self.dataset_name = 'refcoco+'
if self.dataset_name == 'refcoco' or self.dataset_name == 'refcoco+':
self.splitby == 'unc'
if self.dataset_name == 'refcocog':
assert self.splitby == 'umd' or self.splitby == 'google'
dataset_id = '_'.join([self.dataset_name, self.splitby, self.split])
from refer.grefer import G_REFER
logger.info('Loading dataset {} ({}-{}) ...'.format(self.dataset_name, self.splitby, self.split))
logger.info('Refcoco root: {}'.format(self.refer_root))
timer = Timer()
self.refer_root = PathManager.get_local_path(self.refer_root)
with contextlib.redirect_stdout(io.StringIO()):
self.refer = G_REFER(data_root=self.refer_root,
dataset=self.dataset_name,
splitBy=self.splitby)
if timer.seconds() > 1:
logger.info("Loading {} takes {:.2f} seconds.".format(dataset_id, timer.seconds()))
self.ref_ids = self.refer.getRefIds(split=self.split)
self.img_ids = self.refer.getImgIds(self.ref_ids)
self.refs = self.refer.loadRefs(self.ref_ids)
imgs = [self.refer.loadImgs(ref['image_id'])[0] for ref in self.refs]
anns = [self.refer.loadAnns(ref['ann_id']) for ref in self.refs]
self.imgs_refs_anns = list(zip(imgs, self.refs, anns))
logger.info("Loaded {} images, {} referring object sets in G_RefCOCO format from {}".format(len(self.img_ids), len(self.ref_ids), dataset_id))
self.dataset_dicts = []
ann_keys = ["iscrowd", "bbox", "category_id"] + (self.extra_annotation_keys or [])
ref_keys = ["raw", "sent_id"] + (self.extra_refer_keys or [])
ann_lib = {}
NT_count = 0
MT_count = 0
for idx, (img_dict, ref_dict, anno_dicts) in enumerate(self.imgs_refs_anns):
record = {}
record['id'] = idx
record["source"] = 'grefcoco'
record["file_name"] = os.path.join(self.image_root, img_dict["file_name"])
record["height"] = img_dict["height"]
record["width"] = img_dict["width"]
image_id = record["image_id"] = img_dict["id"]
# Check that information of image, ann and ref match each other
# This fails only when the data parsing logic or the annotation file is buggy.
assert ref_dict['image_id'] == image_id
assert ref_dict['split'] == self.split
if not isinstance(ref_dict['ann_id'], list):
ref_dict['ann_id'] = [ref_dict['ann_id']]
# No target samples
if None in anno_dicts:
assert anno_dicts == [None]
assert ref_dict['ann_id'] == [-1]
record['empty'] = True
obj = {key: None for key in ann_keys if key in ann_keys}
obj["bbox_mode"] = BoxMode.XYWH_ABS
obj["empty"] = True
obj = [obj]
# Multi target samples
else:
record['empty'] = False
obj = []
for anno_dict in anno_dicts:
ann_id = anno_dict['id']
if anno_dict['iscrowd']:
continue
assert anno_dict["image_id"] == image_id
assert ann_id in ref_dict['ann_id']
if ann_id in ann_lib:
ann = ann_lib[ann_id]
else:
ann = {key: anno_dict[key] for key in ann_keys if key in anno_dict}
ann["bbox_mode"] = BoxMode.XYWH_ABS
ann["empty"] = False
segm = anno_dict.get("segmentation", None)
assert segm # either list[list[float]] or dict(RLE)
if isinstance(segm, dict):
if isinstance(segm["counts"], list):
# convert to compressed RLE
segm = mask_util.frPyObjects(segm, *segm["size"])
else:
# filter out invalid polygons (< 3 points)
segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
if len(segm) == 0:
num_instances_without_valid_segmentation += 1
continue # ignore this instance
ann["segmentation"] = segm
ann_lib[ann_id] = ann
obj.append(ann)
record["annotations"] = obj
# Process referring expressions
sents = ref_dict['sentences']
for sent in sents:
ref_record = record.copy()
ref = {key: sent[key] for key in ref_keys if key in sent}
ref["ref_id"] = ref_dict["ref_id"]
ref_record["sentence"] = ref
self.dataset_dicts.append(ref_record)
# if ref_record['empty']:
# NT_count += 1
# else:
# MT_count += 1
# logger.info("NT samples: %d, MT samples: %d", NT_count, MT_count)
# Debug mode
# return self.dataset_dicts[:100]
# grefcoco
self.classes = []
self.aug = args.aug
self.bert_type = args.bert_tokenizer
self.img_sz = args.img_size
each_img_sz = int(args.img_size/math.sqrt(self.aug.num_bgs))
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
self.resize_bg1 = A.Compose([
A.Resize(args.img_size, args.img_size, always_apply=True)])
self.resize_bg4 = A.Compose([
A.Resize(each_img_sz, each_img_sz, always_apply=True)],
additional_targets={'image1': 'image', 'image2': 'image', 'image3': 'image',
'mask1': 'mask', 'mask2': 'mask', 'mask3': 'mask',})
self.transforms = A.Compose([
A.Normalize(mean=mean, std=std),
ToTensorV2 (),
])
# ref_ids = self.refer.getRefIds(split=self.split)
# img_ids = self.refer.getImgIds(ref_ids)
all_imgs = self.refer.Imgs
self.imgs = list(all_imgs[i] for i in self.img_ids)
# self.ref_ids = ref_ids#[:500]
self.ref_id2idx = dict(zip(self.ref_ids, range(len(self.ref_ids))))
self.ref_idx2id = dict(zip(range(len(self.ref_ids)), self.ref_ids))
self.img2refs = self.refer.imgToRefs
# self.tokenizer.add_special_tokens({'additional_special_tokens': task_tokens})
# self.tokenizer.add_tokens(position_tokens)
# if we are testing on a dataset, test all sentences of an object;
# o/w, we are validating during training, randomly sample one sentence for efficiency
self.max_tokens = 20
self.is_train = True if split == "train" else False
self.input_ids = []
self.attention_masks = []
for i, r in enumerate(self.ref_ids):
ref = self.refer.Refs[r]
sentences_for_ref = []
attentions_for_ref = []
for j, (el, sent_id) in enumerate(zip(ref['sentences'], ref['sent_ids'])):
sentence_raw = el['raw']
input_ids = self.tokenizer.encode(text=sentence_raw, add_special_tokens=True, max_length=self.max_tokens, truncation=True)
#input_ids = input_ids[:self.max_tokens]
padded_input_ids = [0] * self.max_tokens
padded_input_ids[:len(input_ids)] = input_ids
attention_mask = [0] * self.max_tokens
attention_mask[:len(input_ids)] = [1]*len(input_ids)
sentences_for_ref.append(padded_input_ids)
attentions_for_ref.append(attention_mask)
self.input_ids.append(sentences_for_ref)
self.attention_masks.append(attentions_for_ref)
if self.aug.blur:
self.blur = ImageFilter.GaussianBlur(100)
# Load mldb data / temptative
lmdb_path = f'/data2/dataset/RefCOCO/logit_db/grefcoco/grefcoco.lmdb'
# self.lmdb_dict = read_from_lmdb(lmdb_dir)
self.lmdb_env = lmdb.open(
lmdb_path, subdir=False, max_readers=32,
readonly=True, lock=False,
readahead=False, meminit=False
)
with self.lmdb_env.begin(write=False) as txn:
self.length = loads_pyarrow(txn.get(b'__len__'))
self.keys = loads_pyarrow(txn.get(b'__keys__'))
self.epoch = 0
np.random.seed()
@staticmethod
def _merge_masks(x):
return x.sum(dim=0, keepdim=True).clamp(max=1)
def __len__(self):
return len(self.dataset_dicts)
def __getitem__(self, index):
refid = self.ref_idx2id[index]
with self.lmdb_env.begin(write=False) as txn:
byteflow = txn.get(self.keys[refid])
lmdb_dict = loads_pyarrow(byteflow)
dataset_dict = copy.deepcopy(self.dataset_dicts[index])
img_id = dataset_dict["image_id"]
index = dataset_dict["id"]
# decide mosaic size
if self.split=='train':
if self.aug.num_bgs==4:
aug_prob = self.aug.aug_prob # 0.6
if self.epoch < self.aug.retrieval_epoch :
num_bgs = np.random.choice([1, 4], p=[1-aug_prob, aug_prob])
else :
rand_prob = cosine_annealing(epoch=self.epoch-self.aug.retrieval_epoch, \
n_epochs=self.args.epochs-self.aug.retrieval_epoch,
n_cycles=1, lrate_max=aug_prob)
retr_prob = aug_prob-rand_prob
choice = np.random.choice(['one', 'random', 'retrieval'], p=[1-aug_prob, rand_prob, retr_prob])
if choice == 'one':
num_bgs = 1
else :
num_bgs = 4
else:
num_bgs = 1
else:
num_bgs = 1
target_sent_idx = np.random.choice(len(self.input_ids[index]))
ref_id = self.ref_idx2id[index]
insert_idx = np.random.choice(range(num_bgs))
if num_bgs==1:
ref_ids = []
sent_idxs = []
sents = np.array([], dtype='str')
img_ids = [self.refer.Refs[ref_id]['image_id']]
else:
if self.epoch >= self.aug.retrieval_epoch :
sent_id = list(lmdb_dict.keys())[target_sent_idx]
img_ids = list(np.random.choice(lmdb_dict[sent_id], size=num_bgs-1, replace=True))
img_ids = np.insert(img_ids, insert_idx, self.refer.Refs[ref_id]['image_id'])
ref_ids = list(np.random.choice(self.ref_ids, size=num_bgs-1, replace=False))
sent_idxs = [np.random.choice(len(self.refer.Refs[r]['sentences'])) for r in ref_ids]
sents = np.array([self.refer.Refs[r]['sentences'][sent_idxs[i]]['raw'] for i, r in enumerate(ref_ids)], dtype='str')
ref_ids = np.insert(ref_ids, insert_idx, self.ref_idx2id[index]).astype(int)
sents = np.insert(sents, insert_idx,
self.refer.Refs[ref_ids[insert_idx]]['sentences'][target_sent_idx]['raw'])
sent_idxs = np.insert(sent_idxs, insert_idx, target_sent_idx).astype(int)
# pick a target origin
if self.aug.tgt_selection == 'random':
target_idx = np.random.choice(range(num_bgs))
target_ref_idx = self.ref_id2idx[ref_ids[target_idx]]
target_sent_idx = int(np.random.choice(len(self.input_ids[target_ref_idx])))
elif self.aug.tgt_selection == 'longest':
target_idx = np.argmax(list(map(len, sents)))
target_sent_idx = sent_idxs[target_idx]
elif self.aug.tgt_selection == 'fixed':
target_idx = insert_idx
# target_ref_id = ref_ids[target_idx]
target_ref_id = self.ref_idx2id[index]
# load items
imgs, masks = [], []
if self.epoch >= self.aug.retrieval_epoch :
for img_id in img_ids:
img_info = self.refer.Imgs[img_id]
img_path = os.path.join(self.refer.IMAGE_DIR, img_info['file_name'])
img = Image.open(img_path).convert("RGB")
imgs.append(np.array(img))
ref = self.refer.imgToRefs[img_id][0]
# if self.dataset_name in ['refcoco', 'refcoco+', 'refcocog']:
# mask = np.array(self.refer.getMask(ref)['mask'])
# elif self.dataset_name in ['grefcoco'] :
mask = self.refer.getMaskByRef(ref, ref['ref_id'], self.merge)['mask']
masks.append(mask)
else :
for ref_id in ref_ids:
img_id = self.refer.getImgIds([ref_id])[0]
img_info = self.refer.Imgs[img_id]
img_path = os.path.join(self.refer.IMAGE_DIR, img_info['file_name'])
img = Image.open(img_path).convert("RGB")
imgs.append(np.array(img))
ref = self.refer.loadRefs(ref_ids=[ref_id])
# if self.dataset_name in ['refcoco', 'refcoco+', 'refcocog']:
# mask = np.array(self.refer.getMask(ref[0])['mask'])
# elif self.dataset_name in ['grefcoco'] :
mask = self.refer.getMaskByRef(ref[0], ref_id, self.merge)['mask']
masks.append(mask)
# image resize and apply 4in1 augmentation
if num_bgs==1:
resized = self.resize_bg1(image=imgs[0], mask=masks[0])
imgs, masks = [resized['image']], [resized['mask']]
img = imgs[0]
else:
if self.aug.move_crs_pnt:
crs_y = np.random.randint(0, self.img_sz+1)
crs_x = np.random.randint(0, self.img_sz+1)
else:
crs_y = 480//2 #
crs_x = 480//2 #
if crs_y==0 or crs_x==0:
img1 = np.zeros([0,crs_x,3]) if crs_y==0 else np.zeros([crs_y,0,3])
mask1 = np.zeros([0,crs_x]) if crs_y==0 else np.zeros([crs_y,0])
else:
resize_bg1 = A.Compose([A.Resize(crs_y, crs_x, always_apply=True)])
temp = resize_bg1(image=imgs[0], mask=masks[0])
img1 = temp['image']
mask1 = temp['mask']
if crs_y==0 or crs_x==self.img_sz:
img2 = np.zeros([0,self.img_sz-crs_x,3]) if crs_y==0 \
else np.zeros([crs_y,0,3])
mask2 = np.zeros([0,self.img_sz-crs_x]) if crs_y==0 \
else np.zeros([crs_y,0])
else:
resize_bg2 = A.Compose([
A.Resize(crs_y, self.img_sz-crs_x, always_apply=True)])
temp = resize_bg2(image=imgs[1], mask=masks[1])
img2 = temp['image']
mask2 = temp['mask']
if crs_y==self.img_sz or crs_x==0:
img3 = np.zeros([0,crs_x,3]) if crs_y==self.img_sz \
else np.zeros([self.img_sz-crs_y,0,3])
mask3 = np.zeros([0,crs_x]) if crs_y==self.img_sz \
else np.zeros([self.img_sz-crs_y,0])
else:
resize_bg3 = A.Compose([
A.Resize(self.img_sz-crs_y, crs_x, always_apply=True)])
temp = resize_bg3(image=imgs[2], mask=masks[2])
img3 = temp['image']
mask3 = temp['mask']
if crs_y==self.img_sz or crs_x==self.img_sz:
img4 = np.zeros([0,self.img_sz-crs_x,3]) if crs_y==self.img_sz \
else np.zeros([self.img_sz-crs_y,0,3])
mask4 = np.zeros([0,self.img_sz-crs_x]) if crs_y==self.img_sz \
else np.zeros([self.img_sz-crs_y,0])
else:
resize_bg4 = A.Compose([
A.Resize(self.img_sz-crs_y,
self.img_sz-crs_x, always_apply=True)])
temp = resize_bg4(image=imgs[3], mask=masks[3])
img4 = temp['image']
mask4 = temp['mask']
imgs = [img1, img2, img3, img4]
masks = [mask1, mask2, mask3, mask4]
# scale effect ablation
if self.aug.blur:
imgs = [np.asarray(Image.fromarray(x).filter(self.blur)) if i!=insert_idx else x for i, x in enumerate(imgs)]
num_rows = num_cols = int(math.sqrt(num_bgs))
idxs = [(i*num_cols,i*num_cols+num_cols) for i in range(num_rows)]
img = [np.concatenate(imgs[_from:_to], axis=1) for (_from, _to) in idxs]
img = np.concatenate(img, axis=0).astype(np.uint8)
masks_arr = []
for bg_idx in range(num_bgs):
mask = masks[bg_idx]
temp = [mask if idx==bg_idx else np.zeros_like(masks[idx]) for idx in range(num_bgs)]
mask = [np.concatenate(temp[_from:_to], axis=1) for (_from, _to) in idxs]
mask = np.concatenate(mask, axis=0).astype(np.int32)
masks_arr.append(mask)
masks = masks_arr
mask = masks[target_idx]
mask = mask.astype(np.uint8)
mask[mask>0] = 1
item = self.transforms(image=img, mask=mask)
img_tensor = item['image']
target = item['mask'].long()
target_ref_idx = self.ref_id2idx[target_ref_id]
# if self.is_train:
# embedding = []
# att = []
# for s in range(len(self.input_ids[target_ref_idx])):
# padded_input_ids = self.input_ids[target_ref_idx][s]
# tensor_embeddings = torch.tensor(padded_input_ids).unsqueeze(0)
# attention_mask = self.attention_masks[target_ref_idx][s]
# attention_mask = torch.tensor(attention_mask).unsqueeze(0)
# embedding.append(tensor_embeddings.unsqueeze(-1))
# att.append(attention_mask.unsqueeze(-1))
# tensor_embeddings = torch.cat(embedding, dim=-1)
# attention_mask = torch.cat(att, dim=-1)
# else:
padded_input_ids = self.input_ids[target_ref_idx][target_sent_idx]
tensor_embeddings = torch.tensor(padded_input_ids).unsqueeze(0)
attention_mask = self.attention_masks[target_ref_idx][target_sent_idx]
attention_mask = torch.tensor(attention_mask).unsqueeze(0)
empty = dataset_dict.get("empty", False)
dataset_dict["empty"] = empty
dataset_dict['image'] = img_tensor
dataset_dict['gt_masks'] = target.unsqueeze(0)
dataset_dict['lang_tokens'] = tensor_embeddings
dataset_dict['lang_mask'] = attention_mask
# dataset_dict["gt_mask_merged"] = self._merge_masks(target) if self.merge else None
dataset_dict["gt_mask_merged"] = target.unsqueeze(0)
item = {
'image': img_tensor.float(),
'seg_target': target.long(),
'sentence': tensor_embeddings,
'attn_mask': attention_mask,
}
return item
if __name__ == "__main__":
"""
Test the COCO json dataset loader.
Usage:
python -m detectron2.data.datasets.coco \
path/to/json path/to/image_root dataset_name
"dataset_name" can be "coco_2014_minival_100", or other
pre-registered ones
"""
from detectron2.utils.logger import setup_logger
from detectron2.utils.visualizer import Visualizer
import detectron2.data.datasets # noqa # add pre-defined metadata
import sys
REFCOCO_PATH = '/data2/projects/donghwa/RIS/ReLA/datasets'
COCO_TRAIN_2014_IMAGE_ROOT = '/data2/projects/donghwa/RIS/ReLA/datasets/images'
REFCOCO_DATASET = 'grefcoco'
REFCOCO_SPLITBY = 'unc'
REFCOCO_SPLIT = 'train'
logger = setup_logger(name=__name__)
dicts = load_grefcoco_json(REFCOCO_PATH, REFCOCO_DATASET, REFCOCO_SPLITBY, REFCOCO_SPLIT, COCO_TRAIN_2014_IMAGE_ROOT)
logger.info("Done loading {} samples.".format(len(dicts)))
|