File size: 11,811 Bytes
8d82201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import contextlib
import io
import logging
import numpy as np
import os
import random
import copy
import pycocotools.mask as mask_util
from fvcore.common.timer import Timer
from PIL import Image
import torch.utils.data as data

from detectron2.structures import Boxes, BoxMode, PolygonMasks, RotatedBoxes
from detectron2.utils.file_io import PathManager

import time
import copy
import logging
import torch

from detectron2.config import configurable
from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T

# from transformers import BertTokenizer
from bert.tokenization_bert import BertTokenizer
from pycocotools import mask as coco_mask
from data.utils import convert_coco_poly_to_mask, build_transform_train, build_transform_test
"""
This file contains functions to parse RefCOCO-format annotations into dicts in "Detectron2 format".
"""


logger = logging.getLogger(__name__)

__all__ = ["load_refcoco_json"]

class GReferDataset(data.Dataset):
    def __init__(self, 
                 args, refer_root, dataset_name, splitby, split, image_root,
                 img_format="RGB", merge=True,
                 extra_annotation_keys=None, extra_refer_keys=None):
        
        self.refer_root = refer_root
        self.dataset_name = dataset_name
        self.splitby = splitby
        self.split = split
        self.image_root = image_root
        self.extra_annotation_keys = extra_annotation_keys
        self.extra_refer_keys = extra_refer_keys
        self.img_format = img_format
        self.merge = merge
        self.max_tokens = 20
        self.tokenizer = BertTokenizer.from_pretrained(args.bert_tokenizer)
        
        if split == "train":
            self.tfm_gens = build_transform_train(args)
        elif split in ["val", "test", "testA", "testB"]:
            self.tfm_gens = build_transform_test(args)
    
        if self.dataset_name == 'refcocop':
            self.dataset_name = 'refcoco+'
        if self.dataset_name == 'refcoco' or self.dataset_name == 'refcoco+':
            self.splitby == 'unc'
        if self.dataset_name == 'refcocog':
            assert self.splitby == 'umd' or self.splitby == 'google'

        dataset_id = '_'.join([self.dataset_name, self.splitby, self.split])
        
        from refer.grefer import G_REFER
        logger.info('Loading dataset {} ({}-{}) ...'.format(self.dataset_name, self.splitby, self.split))
        logger.info('Refcoco root: {}'.format(self.refer_root))
        timer = Timer()
        self.refer_root = PathManager.get_local_path(self.refer_root)
        with contextlib.redirect_stdout(io.StringIO()):
            refer_api = G_REFER(data_root=self.refer_root,
                            dataset=self.dataset_name,
                            splitBy=self.splitby)
        if timer.seconds() > 1:
            logger.info("Loading {} takes {:.2f} seconds.".format(dataset_id, timer.seconds()))
        
        self.ref_ids = refer_api.getRefIds(split=self.split)
        self.img_ids = refer_api.getImgIds(self.ref_ids)
        self.refs = refer_api.loadRefs(self.ref_ids)
        imgs = [refer_api.loadImgs(ref['image_id'])[0] for ref in self.refs]
        anns = [refer_api.loadAnns(ref['ann_id']) for ref in self.refs]
        self.imgs_refs_anns = list(zip(imgs, self.refs, anns))

        logger.info("Loaded {} images, {} referring object sets in G_RefCOCO format from {}".format(len(self.img_ids), len(self.ref_ids), dataset_id))


        self.dataset_dicts = []

        ann_keys = ["iscrowd", "bbox", "category_id"] + (self.extra_annotation_keys or [])
        ref_keys = ["raw", "sent_id"] + (self.extra_refer_keys or [])

        ann_lib = {}

        NT_count = 0
        MT_count = 0

        for idx, (img_dict, ref_dict, anno_dicts) in enumerate(self.imgs_refs_anns):
            record = {}
            record['id'] = idx
            record["source"] = 'grefcoco'
            record["file_name"] = os.path.join(self.image_root, img_dict["file_name"])
            record["height"] = img_dict["height"]
            record["width"] = img_dict["width"]
            image_id = record["image_id"] = img_dict["id"]

            # Check that information of image, ann and ref match each other
            # This fails only when the data parsing logic or the annotation file is buggy.
            assert ref_dict['image_id'] == image_id
            assert ref_dict['split'] == self.split
            if not isinstance(ref_dict['ann_id'], list):
                ref_dict['ann_id'] = [ref_dict['ann_id']]

            # No target samples
            if None in anno_dicts:
                assert anno_dicts == [None]
                assert ref_dict['ann_id'] == [-1]
                record['empty'] = True
                obj = {key: None for key in ann_keys if key in ann_keys}
                obj["bbox_mode"] = BoxMode.XYWH_ABS
                obj["empty"] = True
                obj = [obj]

            # Multi target samples
            else:
                record['empty'] = False
                obj = []
                for anno_dict in anno_dicts:
                    ann_id = anno_dict['id']
                    if anno_dict['iscrowd']:
                        continue
                    assert anno_dict["image_id"] == image_id
                    assert ann_id in ref_dict['ann_id']

                    if ann_id in ann_lib:
                        ann = ann_lib[ann_id]
                    else:
                        ann = {key: anno_dict[key] for key in ann_keys if key in anno_dict}
                        ann["bbox_mode"] = BoxMode.XYWH_ABS
                        ann["empty"] = False
    
                        segm = anno_dict.get("segmentation", None)
                        assert segm  # either list[list[float]] or dict(RLE)
                        if isinstance(segm, dict):
                            if isinstance(segm["counts"], list):
                                # convert to compressed RLE
                                segm = mask_util.frPyObjects(segm, *segm["size"])
                        else:
                            # filter out invalid polygons (< 3 points)
                            segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
                            if len(segm) == 0:
                                num_instances_without_valid_segmentation += 1
                                continue  # ignore this instance
                        ann["segmentation"] = segm
                        ann_lib[ann_id] = ann

                    obj.append(ann)

            record["annotations"] = obj

            # Process referring expressions
            sents = ref_dict['sentences']
            for sent in sents:
                ref_record = record.copy()
                ref = {key: sent[key] for key in ref_keys if key in sent}
                ref["ref_id"] = ref_dict["ref_id"]
                ref_record["sentence"] = ref
                self.dataset_dicts.append(ref_record)
        #         if ref_record['empty']:
        #             NT_count += 1
        #         else:
        #             MT_count += 1

        # logger.info("NT samples: %d, MT samples: %d", NT_count, MT_count)

        # Debug mode
        # return self.dataset_dicts[:100]
    
    @staticmethod
    def _merge_masks(x):
        return x.sum(dim=0, keepdim=True).clamp(max=1)


    def __getitem__(self, index):
        
        dataset_dict = copy.deepcopy(self.dataset_dicts[index])
        # dataset_dict = copy.deepcopy(dataset_dict)  # it will be modified by code below
        image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
        utils.check_image_size(dataset_dict, image)

        # TODO: get padding mask
        # by feeding a "segmentation mask" to the same transforms
        padding_mask = np.ones(image.shape[:2])
        image, transforms = T.apply_transform_gens(self.tfm_gens, image)
        # the crop transformation has default padding value 0 for segmentation
        padding_mask = transforms.apply_segmentation(padding_mask)
        padding_mask = ~padding_mask.astype(bool) 

        image_shape = image.shape[:2]  # h, w

        # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
        # but not efficient on large generic data structures due to the use of pickle & mp.Queue.
        # Therefore it's important to use torch.Tensor.
        dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))
        dataset_dict["padding_mask"] = torch.as_tensor(np.ascontiguousarray(padding_mask))

        # USER: Implement additional transformations if you have other types of data
        annos = [
            utils.transform_instance_annotations(obj, transforms, image_shape)
            for obj in dataset_dict.pop("annotations")
            if (obj.get("iscrowd", 0) == 0) and (obj.get("empty", False) == False)
        ]
        instances = utils.annotations_to_instances(annos, image_shape)

        empty = dataset_dict.get("empty", False)

        if len(instances) > 0:
            assert (not empty)
            instances.gt_boxes = instances.gt_masks.get_bounding_boxes()
            # Generate masks from polygon
            h, w = instances.image_size
            assert hasattr(instances, 'gt_masks')
            gt_masks = instances.gt_masks
            gt_masks = convert_coco_poly_to_mask(gt_masks.polygons, h, w)
            instances.gt_masks = gt_masks
        else:
            assert empty
            gt_masks = torch.zeros((0, image_shape[0], image_shape[1]), dtype=torch.uint8)
            instances.gt_masks = gt_masks

        if self.split == "train" :
            dataset_dict["instances"] = instances
        else:
            dataset_dict["gt_mask"] = gt_masks

        dataset_dict["empty"] = empty
        dataset_dict["gt_mask_merged"] = self._merge_masks(gt_masks) if self.merge else None
        # dataset_dict["gt_mask_merged"] = dataset_dict["gt_mask_merged"].float()

        # Language data
        sentence_raw = dataset_dict['sentence']['raw']
        attention_mask = [0] * self.max_tokens
        padded_input_ids = [0] * self.max_tokens

        input_ids = self.tokenizer.encode(text=sentence_raw, add_special_tokens=True)

        input_ids = input_ids[:self.max_tokens]
        padded_input_ids[:len(input_ids)] = input_ids

        attention_mask[:len(input_ids)] = [1] * len(input_ids)

        dataset_dict['lang_tokens'] = torch.tensor(padded_input_ids).unsqueeze(0)
        dataset_dict['lang_mask'] = torch.tensor(attention_mask).unsqueeze(0)

        return dataset_dict["image"].float(), dataset_dict["gt_mask_merged"].squeeze(0).long(), dataset_dict['lang_tokens'], dataset_dict['lang_mask']

        
    def __len__(self):
        return len(self.dataset_dicts)
    






if __name__ == "__main__":
    """
    Test the COCO json dataset loader.

    Usage:
        python -m detectron2.data.datasets.coco \
            path/to/json path/to/image_root dataset_name

        "dataset_name" can be "coco_2014_minival_100", or other
        pre-registered ones
    """
    from detectron2.utils.logger import setup_logger
    from detectron2.utils.visualizer import Visualizer
    import detectron2.data.datasets  # noqa # add pre-defined metadata
    import sys

    REFCOCO_PATH = '/data2/projects/donghwa/RIS/ReLA/datasets'
    COCO_TRAIN_2014_IMAGE_ROOT = '/data2/projects/donghwa/RIS/ReLA/datasets/images'
    REFCOCO_DATASET = 'grefcoco'
    REFCOCO_SPLITBY = 'unc'
    REFCOCO_SPLIT = 'train'

    logger = setup_logger(name=__name__)
    dicts = load_grefcoco_json(REFCOCO_PATH, REFCOCO_DATASET, REFCOCO_SPLITBY, REFCOCO_SPLIT, COCO_TRAIN_2014_IMAGE_ROOT)
    logger.info("Done loading {} samples.".format(len(dicts)))