File size: 9,727 Bytes
8d82201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import sys
import json
import torch.utils.data as data
import torch
import itertools
from torchvision import transforms
from torch.autograd import Variable
import numpy as np
from PIL import Image
import torchvision.transforms.functional as TF
import random

from bert.tokenization_bert import BertTokenizer

import h5py
from refer.refer import REFER

from args import get_parser

# Dataset configuration initialization
# parser = get_parser()
# args = parser.parse_args()


class ReferDataset(data.Dataset):

    def __init__(self,
                 args,
                 image_transforms=None,
                 target_transforms=None,
                 split='train',
                 eval_mode=False):

        self.classes = []
        self.image_transforms = image_transforms
        self.target_transform = target_transforms
        self.split = split
        self.refer = REFER(args.refer_data_root, args.dataset, args.splitBy)

        self.max_tokens = 20

        ref_ids = self.refer.getRefIds(split=self.split)
        img_ids = self.refer.getImgIds(ref_ids)

        all_imgs = self.refer.Imgs
        self.imgs = list(all_imgs[i] for i in img_ids)
        self.ref_ids = ref_ids

        self.input_ids = []
        self.attention_masks = []
        self.tokenizer = BertTokenizer.from_pretrained(args.bert_tokenizer)

        # for metric learning
        self.ROOT = '/data2/projects/seunghoon/VerbRIS/VerbCentric_CY/datasets/VRIS'
        self.metric_learning = args.metric_learning
        self.exclude_multiobj = args.exclude_multiobj
        self.metric_mode = args.metric_mode
        self.exclude_position = False
        self.hp_selection = args.hp_selection

        if self.metric_learning and eval_mode == False:
            self.hardneg_prob = args.hn_prob 
            self.multi_obj_ref_ids = self._load_multi_obj_ref_ids()
            self.hardpos_meta, self.hardneg_meta = self._load_metadata()
        else:
            self.hardneg_prob = 0.0
            self.multi_obj_ref_ids = None
            self.hardpos_meta, self.hardneg_meta = None, None


        self.eval_mode = eval_mode
        # if we are testing on a dataset, test all sentences of an object;
        # o/w, we are validating during training, randomly sample one sentence for efficiency
        for r in ref_ids:
            ref = self.refer.Refs[r]

            sentences_for_ref = []
            attentions_for_ref = []

            for i, (el, sent_id) in enumerate(zip(ref['sentences'], ref['sent_ids'])):
                sentence_raw = el['raw']
                attention_mask = [0] * self.max_tokens
                padded_input_ids = [0] * self.max_tokens

                input_ids = self.tokenizer.encode(text=sentence_raw, add_special_tokens=True)

                # truncation of tokens
                input_ids = input_ids[:self.max_tokens]

                padded_input_ids[:len(input_ids)] = input_ids
                attention_mask[:len(input_ids)] = [1]*len(input_ids)

                sentences_for_ref.append(torch.tensor(padded_input_ids).unsqueeze(0))
                attentions_for_ref.append(torch.tensor(attention_mask).unsqueeze(0))

            self.input_ids.append(sentences_for_ref)
            self.attention_masks.append(attentions_for_ref)


    def _tokenize(self, sentence):
        attention_mask = [0] * self.max_tokens
        padded_input_ids = [0] * self.max_tokens

        input_ids = self.tokenizer.encode(text=sentence, add_special_tokens=True)
        # truncation of tokens
        input_ids = input_ids[:self.max_tokens]
        padded_input_ids[:len(input_ids)] = input_ids
        attention_mask[:len(input_ids)] = [1]*len(input_ids)

        # match shape as (1, max_tokens)
        return torch.tensor(padded_input_ids).unsqueeze(0), torch.tensor(attention_mask).unsqueeze(0)


    def _load_multi_obj_ref_ids(self):
        # Load multi-object reference IDs based on configurations
        if not self.exclude_multiobj and not self.exclude_position :
            return None
        elif self.exclude_position:
            multiobj_path = os.path.join(self.ROOT, 'multiobj_ov2_nopos.txt')
        elif self.exclude_multiobj :
            multiobj_path = os.path.join(self.ROOT, 'multiobj_ov3.txt')
        with open(multiobj_path, 'r') as f:
            return [int(line.strip()) for line in f.readlines()]

    def _load_metadata(self):
        # Load metadata for hard positive verb phrases, hard negative queries
        if 'refined' in self.metric_mode or 'hardneg' in self.metric_mode :
            hardpos_path =  os.path.join(self.ROOT, 'hardpos_verdict_gref_v4.json') 
        else :
            hardpos_path = os.path.join(self.ROOT, 'hardpos_verbphrase_0906upd.json')
        # do not use hardneg_path
        hardneg_path = os.path.join(self.ROOT, 'hardneg_verb.json')

        with open(hardpos_path, 'r', encoding='utf-8') as f:
            hardpos_json = json.load(f)
        if "hardpos_only" in self.metric_mode :
            hardneg_json = None
        else :         
            with open(hardneg_path, 'r', encoding='utf-8') as q:
                hardneg_json = json.load(q)
        return hardpos_json, hardneg_json
    

    def _get_hardpos_verb(self, ref, seg_id, sent_idx) :
        if seg_id in self.multi_obj_ref_ids:
            return ''
        
        # Extract metadata for hard positives if present            
        hardpos_dict = self.hardpos_meta.get(str(seg_id), {})
        if self.hp_selection == 'strict' :
            sent_id_list = list(hardpos_dict.keys())
            cur_hardpos = hardpos_dict.get(sent_id_list[sent_idx], {}).get('phrases', [])
        else : 
            cur_hardpos = list(itertools.chain.from_iterable(hardpos_dict[sid]['phrases'] for sid in hardpos_dict))

        if cur_hardpos:
            # Assign a hard positive verb phrase if available
            raw_verb = random.choice(cur_hardpos)
            return raw_verb
        
        return ''

        
    def get_classes(self):
        return self.classes

    def __len__(self):
        return len(self.ref_ids)

    def __getitem__(self, index):
        this_ref_id = self.ref_ids[index]
        this_img_id = self.refer.getImgIds(this_ref_id)
        this_img = self.refer.Imgs[this_img_id[0]]

        IMAGE_DIR = '/data2/dataset/COCO2014/trainval2014/'
        img = Image.open(os.path.join(IMAGE_DIR, this_img['file_name'])).convert("RGB")
        ref = self.refer.loadRefs(this_ref_id)

        ref_mask = np.array(self.refer.getMask(ref[0])['mask'])
        annot = np.zeros(ref_mask.shape)
        annot[ref_mask == 1] = 1

        annot = Image.fromarray(annot.astype(np.uint8), mode="P")

        if self.image_transforms is not None:
            # resize, from PIL to tensor, and mean and std normalization
            img, target = self.image_transforms(img, annot)

        if self.eval_mode:
            embedding = []
            att = []
            for s in range(len(self.input_ids[index])):
                e = self.input_ids[index][s]
                a = self.attention_masks[index][s]
                embedding.append(e.unsqueeze(-1))
                att.append(a.unsqueeze(-1))

            tensor_embeddings = torch.cat(embedding, dim=-1)
            attention_mask = torch.cat(att, dim=-1)

            return img, target, tensor_embeddings, attention_mask
        
        else: # train phase
            choice_sent = np.random.choice(len(self.input_ids[index]))
            tensor_embeddings = self.input_ids[index][choice_sent]
            attention_mask = self.attention_masks[index][choice_sent]

            if self.metric_learning:
                pos_sent = torch.zeros_like(tensor_embeddings)
                pos_attn_mask = torch.zeros_like(attention_mask)
                
                if 'hardpos_' in self.metric_mode or self.hardneg_prob == 0.0:
                    if 'refined' in self.metric_mode :
                        pos_sent_picked = self._get_hardpos_verb(ref, this_ref_id, choice_sent)
                    else : 
                        pos_sents = self.hardpos_meta[str(this_ref_id)].values()
                        # drop elements with none
                        pos_sents = [s for s in pos_sents if s is not None]
                        pos_sent_picked = random.choice(list(pos_sents))
                    if pos_sent_picked:
                        pos_sent, pos_attn_mask = self._tokenize(pos_sent_picked)
                        
                    return img, target, tensor_embeddings, attention_mask, pos_sent, pos_attn_mask
                else:
                    neg_sent = torch.zeros_like(tensor_embeddings)
                    neg_attn_mask = torch.zeros_like(attention_mask)

                    pos_sents = self.hardpos_meta[str(this_ref_id)].values()
                    # drop elements with none
                    pos_sents = [s for s in pos_sents if s is not None]
                    pos_sent_picked = random.choice(list(pos_sents))

                    if pos_sent_picked:
                        pos_sent, pos_attn_mask = self._tokenize(pos_sent_picked)

                    if random.random() < self.hardneg_prob:
                        neg_sents = self.hardneg_meta[str(this_ref_id)].values()
                        neg_sents = [s for s in neg_sents if s is not None]
                        neg_sent_picked = random.choice(list(neg_sents))
                        #print("neg_sent: ", neg_sent)

                        if neg_sent_picked:
                            neg_sent, neg_attn_mask = self._tokenize(neg_sent_picked)

                    return img, target, tensor_embeddings, attention_mask, pos_sent, pos_attn_mask, neg_sent, neg_attn_mask