Commit
·
3ec44d0
1
Parent(s):
c5456a2
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow.keras as keras
|
3 |
+
from tensorflow.keras.models import load_model
|
4 |
+
from tensorflow.keras.preprocessing import image
|
5 |
+
import numpy as np
|
6 |
+
import random
|
7 |
+
|
8 |
+
model = load_model('model.h5')
|
9 |
+
|
10 |
+
# Define class labels
|
11 |
+
class_labels = ['Ahmedabad', 'Delhi', 'Kerala', 'Kolkata', 'Mumbai']
|
12 |
+
|
13 |
+
# Set the threshold for minimum accuracy
|
14 |
+
threshold = 0.3
|
15 |
+
|
16 |
+
|
17 |
+
# Create a function to process the uploaded image
|
18 |
+
def process_image(uploaded_image):
|
19 |
+
# Load and preprocess the input image
|
20 |
+
img = image.load_img(uploaded_image, target_size=(175, 175)) #150 for my model
|
21 |
+
img = image.img_to_array(img)
|
22 |
+
img = np.expand_dims(img, axis=0)
|
23 |
+
img = img / 255.0
|
24 |
+
|
25 |
+
# Make predictions on the input image
|
26 |
+
predictions = model.predict(img)
|
27 |
+
|
28 |
+
# Get the predicted class label and accuracy
|
29 |
+
predicted_class_index = np.argmax(predictions)
|
30 |
+
predicted_class_label = class_labels[predicted_class_index]
|
31 |
+
accuracy = predictions[0][predicted_class_index]
|
32 |
+
|
33 |
+
# Check if accuracy is below the threshold for all classes
|
34 |
+
if all(accuracy < threshold for accuracy in predictions[0]):
|
35 |
+
return "This location is not in our database."
|
36 |
+
else:
|
37 |
+
output = f"<span style='font-size: 24px; color: {random.choice(['#FF9800', '#FF5722', '#673AB7', '#009688'])};'>Predicted class: <strong>{predicted_class_label}</strong></span>"
|
38 |
+
acc = f"<span style='font-size: 24px; color: {random.choice(['#FF9800', '#FF5722', '#673AB7', '#009688'])};'>Accuracy: <strong>{accuracy*100:.02f}%</strong></span>"
|
39 |
+
return output + "<br>" + acc
|
40 |
+
|
41 |
+
|
42 |
+
# Set Streamlit app title
|
43 |
+
st.title("Location Classification")
|
44 |
+
|
45 |
+
# Add a file uploader to the app
|
46 |
+
uploaded_image = st.file_uploader("Upload an image (JPG or JPEG format)", type=["jpg", "jpeg"])
|
47 |
+
|
48 |
+
# Process the uploaded image and display the result
|
49 |
+
if uploaded_image is not None:
|
50 |
+
st.write("Uploaded image:")
|
51 |
+
st.image(uploaded_image, use_column_width=True)
|
52 |
+
|
53 |
+
# Convert the uploaded image to a file path
|
54 |
+
image_path = "./uploaded_image.jpg"
|
55 |
+
with open(image_path, "wb") as f:
|
56 |
+
f.write(uploaded_image.getvalue())
|
57 |
+
|
58 |
+
# Process the image and display the result
|
59 |
+
result = process_image(image_path)
|
60 |
+
st.markdown(result, unsafe_allow_html=True)
|