File size: 2,214 Bytes
de4a7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9be526
de4a7d8
c9be526
 
 
e082e96
c9be526
 
de4a7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
c9be526
 
 
de4a7d8
 
 
 
 
 
 
c9be526
 
de4a7d8
 
 
 
 
 
c9be526
 
de4a7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9be526
 
 
de4a7d8
 
 
c9be526
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
language:
- en
tags:
- code
- sarcasm
- chandler-bing
- lora
- transformers
metrics:
- code_eval
pipeline_tag: text-generation
base_model: dgtalbug/stable-code-instruct-3b-base
---

# Stephen

> **STEPHEN** β€” *Sarcastically Trained Engine Pretending to Humor Every Nonsense*  
> *"Because your nonsense deserves world-class sarcasm."* 😏

![Stephen Banner](https://placehold.co/1200x400?text=Stephen+Sarcastically+Trained+Engine+Pretending+to+Humor+Every+Nonsense)

---

## Model Description

**Stephen** is a fine-tuned variant of `stable-code-instruct-3b` with a personality inspired by:
- **Chandler Bing** (*Friends*) β€” sarcastic wit  
- **Deadpool** β€” meta humor & breaking the fourth wall  
- **Senior Dev energy** β€” opinionated code roasting  

Stephen is trained on:
- *Friends* transcripts (dialogue style)
- Reddit jokes datasets
- Sarcasm headlines
- Coding & programming humor datasets

---

## Intended Use
- Writing sarcastic code comments
- Generating humorous coding explanations
- Adding playful banter to code reviews
- Conversational AI with a strong personality

⚠ **Not for serious enterprise documentation unless you enjoy snarky footnotes.**

---

## Training Details
- **Base Model**: `dgtalbug/stable-code-instruct-3b-base`
- **Fine-tuning Method**: LoRA + PEFT
- **Framework**: Transformers, BitsAndBytes
- **Datasets**: Friends transcripts, Reddit jokes, Sarcasm headlines, Programming humor

---

## Example Usage

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "dgtalbug/stephen"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16).eval()

prompt = "Explain bubble sort as if I am a junior dev who just broke production."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=150)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

```
@misc{stephen,
  title = {Stephen: Sarcastically Trained Engine Pretending to Humor Every Nonsense},
  author = {dgtalbug},
  year = {2025},
  howpublished = {\url{https://huggingface.co/dgtalbug/stephen}}
}