--- license: other language: - en tags: - causal-lm - code metrics: - code_eval library_name: transformers model-index: - name: dgtalbug/stable-code-instruct-3b results: - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Python) metrics: - name: pass@1 type: pass@1 value: 32.4 - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (C++) metrics: - name: pass@1 type: pass@1 value: 30.9 - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Java) metrics: - name: pass@1 type: pass@1 value: 32.1 - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (JavaScript) metrics: - name: pass@1 type: pass@1 value: 32.1 - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (PHP) metrics: - name: pass@1 type: pass@1 value: 24.2 - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Rust) metrics: - name: pass@1 type: pass@1 value: 23.0 --- # **Stable Code Instruct 3B — Base Model** > This repository stores an **unchanged** copy of `stabilityai/stable-code-instruct-3b` > for use as a **base model** in future fine‑tuning projects (including Stephen). --- ## 📌 About the Model `stable-code-instruct-3b` is a **2.7B parameter decoder-only transformer** from Stability AI, tuned for multi‑language code generation and conversational coding assistance. It is suitable as a **starting point** for specialized code assistants, including fine‑tuned variants with domain‑specific datasets. **Key Features:** - General purpose code generation across multiple programming languages. - Instruction‑tuned for better conversational performance. - Strong performance on [MultiPL-E](https://github.com/nuprl/MultiPL-E) benchmarks. --- ## 📊 Performance (MultiPL-E Benchmark) | Language | pass@1 | |--------------|--------| | Python | 32.4% | | C++ | 30.9% | | Java | 32.1% | | JavaScript | 32.1% | | PHP | 24.2% | | Rust | 23.0% | --- ## 🚀 Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "dgtalbug/stable-code-instruct-3b" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, trust_remote_code=True ).cuda().eval() messages = [ {"role": "system", "content": "You are a helpful coding assistant."}, {"role": "user", "content": "Write a Python function to reverse a string."} ] prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) inputs = tokenizer([prompt], return_tensors="pt").to(model.device) tokens = model.generate( **inputs, max_new_tokens=200, temperature=0.5, top_p=0.95, top_k=100, do_sample=True, use_cache=True ) output = tokenizer.batch_decode(tokens[:, inputs.input_ids.shape[-1]:], skip_special_tokens=True)[0] print(output) ``` --- ## 📜 License This model follows the **[Stability AI Community License](https://huggingface.co/stabilityai/stable-code-instruct-3b/blob/main/LICENSE.md)**. For commercial use, refer to [Stability AI licensing terms](https://stability.ai/license). --- ## 📌 Note for Fine‑Tuning This repository is **not modified** — it is kept as a **clean base model** for derivative works. Fine‑tuned versions (e.g., Stephen) will be released in **separate repositories**.