--- language: - en license: llama3 library_name: transformers tags: - orpo - llama 3 - rlhf - sft base_model: - meta-llama/Meta-Llama-3-70B datasets: - mlabonne/orpo-dpo-mix-40k model-index: - name: Llama-3-70B-Orpo-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 20.49 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-70B-Orpo-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 24.09 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-70B-Orpo-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 13.52 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-70B-Orpo-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 1.01 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-70B-Orpo-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 16.28 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-70B-Orpo-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 32.14 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-70B-Orpo-v0.1 name: Open LLM Leaderboard --- # dfurman/Llama-3-70B-Orpo-v0.1 ![](https://raw.githubusercontent.com/daniel-furman/sft-demos/main/assets/llama_3.jpeg) This is an ORPO fine-tune of [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) on 2k samples of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k). It's a successful fine-tune that follows the ChatML template! ## 🔎 Application This model uses a context window of 8k. It was trained with the ChatML template. ## 🏆 Evaluation ### Open LLM Leaderboard | Model ID | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------: | --------: | --------: | ---------: | --------: | --------: | --------: | | [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) [📄](https://huggingface.co/datasets/open-llm-leaderboard/details_meta-llama__Meta-Llama-3-70B-Instruct) | 77.88 | 71.42 | 85.69 | 80.06 | 61.81 | 82.87 | 85.44 | | [**dfurman/Llama-3-70B-Orpo-v0.1**](https://huggingface.co/dfurman/Llama-3-70B-Orpo-v0.1) [📄](https://huggingface.co/datasets/open-llm-leaderboard/details_dfurman__Llama-3-70B-Orpo-v0.1) | **74.67** | **68.69** | **88.01** | **79.39** | **49.62** | **85.48** | **76.8** | | [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) [📄](https://huggingface.co/datasets/open-llm-leaderboard/details_meta-llama__Meta-Llama-3-70B) | 73.96 | 68.77 | 87.98 | 79.23 | 45.56 | 85.32 | 76.88 | ## 📈 Training curves You can find the experiment on W&B at [this address](https://wandb.ai/dryanfurman/huggingface/runs/ojsbud95/workspace?nw=nwuserdryanfurman). ## 💻 Usage
Setup ```python !pip install -qU transformers accelerate bitsandbytes from transformers import AutoTokenizer, BitsAndBytesConfig import transformers import torch if torch.cuda.get_device_capability()[0] >= 8: !pip install -qqq flash-attn attn_implementation = "flash_attention_2" torch_dtype = torch.bfloat16 else: attn_implementation = "eager" torch_dtype = torch.float16 bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch_dtype, bnb_4bit_use_double_quant=True, ) model = "dfurman/Llama-3-70B-Orpo-v0.1" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={ "torch_dtype": torch_dtype, "quantization_config": bnb_config, "device_map": "auto", "attn_implementation": attn_implementation, } ) ```
### Run ```python messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me a recipe for a spicy margarita."}, ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) print("***Prompt:\n", prompt) outputs = pipeline(prompt, max_new_tokens=1000, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print("***Generation:\n", outputs[0]["generated_text"][len(prompt):]) ```
Output ``` """ """ ```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dfurman__Llama-3-70B-Orpo-v0.1) | Metric |Value| |-------------------|----:| |Avg. |17.92| |IFEval (0-Shot) |20.49| |BBH (3-Shot) |24.09| |MATH Lvl 5 (4-Shot)|13.52| |GPQA (0-shot) | 1.01| |MuSR (0-shot) |16.28| |MMLU-PRO (5-shot) |32.14|