Push model using huggingface_hub.
Browse files- README.md +241 -470
- config.json +1 -1
- config_setfit.json +2 -2
- model.safetensors +1 -1
- model_head.pkl +1 -1
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
base_model: desarrolloasesoreslocales/bert-leg-al-corpus
|
3 |
library_name: setfit
|
4 |
metrics:
|
5 |
- accuracy
|
@@ -28,7 +27,7 @@ widget:
|
|
28 |
correspondiente.
|
29 |
inference: true
|
30 |
model-index:
|
31 |
-
- name: SetFit
|
32 |
results:
|
33 |
- task:
|
34 |
type: text-classification
|
@@ -39,13 +38,13 @@ model-index:
|
|
39 |
split: test
|
40 |
metrics:
|
41 |
- type: accuracy
|
42 |
-
value: 0.
|
43 |
name: Accuracy
|
44 |
---
|
45 |
|
46 |
-
# SetFit
|
47 |
|
48 |
-
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification.
|
49 |
|
50 |
The model has been trained using an efficient few-shot learning technique that involves:
|
51 |
|
@@ -56,7 +55,7 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
56 |
|
57 |
### Model Description
|
58 |
- **Model Type:** SetFit
|
59 |
-
- **Sentence Transformer
|
60 |
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
61 |
- **Maximum Sequence Length:** 512 tokens
|
62 |
- **Number of Classes:** 20 classes
|
@@ -99,7 +98,7 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
99 |
### Metrics
|
100 |
| Label | Accuracy |
|
101 |
|:--------|:---------|
|
102 |
-
| **all** | 0.
|
103 |
|
104 |
## Uses
|
105 |
|
@@ -178,483 +177,255 @@ preds = model("procedo al estacionamiento por autorización del agente 12289 (Po
|
|
178 |
|
179 |
### Training Hyperparameters
|
180 |
- batch_size: (16, 16)
|
181 |
-
- num_epochs: (
|
182 |
- max_steps: -1
|
183 |
- sampling_strategy: oversampling
|
184 |
-
- num_iterations: 200
|
185 |
- body_learning_rate: (1e-06, 1e-06)
|
186 |
-
- head_learning_rate:
|
187 |
- loss: CosineSimilarityLoss
|
188 |
- distance_metric: cosine_distance
|
189 |
- margin: 0.25
|
190 |
- end_to_end: True
|
191 |
- use_amp: True
|
192 |
- warmup_proportion: 0.1
|
|
|
193 |
- seed: 42
|
194 |
- eval_max_steps: 100
|
195 |
- load_best_model_at_end: True
|
196 |
|
197 |
### Training Results
|
198 |
-
| Epoch | Step
|
199 |
-
|
200 |
-
| 0.
|
201 |
-
| 0.
|
202 |
-
| 0.
|
203 |
-
| 0.
|
204 |
-
| 0.
|
205 |
-
| 0.
|
206 |
-
| 0.
|
207 |
-
| 0.
|
208 |
-
| 0.
|
209 |
-
| 0.
|
210 |
-
| 0.
|
211 |
-
| 0.
|
212 |
-
|
|
213 |
-
| 0.
|
214 |
-
| 0.
|
215 |
-
| 0.
|
216 |
-
|
|
217 |
-
|
|
218 |
-
|
|
219 |
-
|
|
220 |
-
|
|
221 |
-
|
|
222 |
-
|
|
223 |
-
|
|
224 |
-
|
|
225 |
-
|
|
226 |
-
|
|
227 |
-
|
|
228 |
-
|
|
229 |
-
|
|
230 |
-
|
|
231 |
-
|
|
232 |
-
|
|
233 |
-
|
|
234 |
-
|
|
235 |
-
|
|
236 |
-
|
|
237 |
-
|
|
238 |
-
|
|
239 |
-
|
|
240 |
-
|
|
241 |
-
|
|
242 |
-
|
|
243 |
-
|
|
244 |
-
|
|
245 |
-
|
|
246 |
-
|
|
247 |
-
|
|
248 |
-
|
|
249 |
-
|
|
250 |
-
|
|
251 |
-
|
|
252 |
-
|
|
253 |
-
|
|
254 |
-
|
|
255 |
-
|
|
256 |
-
|
|
257 |
-
|
|
258 |
-
|
|
259 |
-
|
|
260 |
-
|
|
261 |
-
|
|
262 |
-
|
|
263 |
-
|
|
264 |
-
|
|
265 |
-
|
|
266 |
-
|
|
267 |
-
|
|
268 |
-
|
|
269 |
-
|
|
270 |
-
|
|
271 |
-
|
|
272 |
-
|
|
273 |
-
|
|
274 |
-
|
|
275 |
-
|
|
276 |
-
| 0
|
277 |
-
|
|
278 |
-
| 0.
|
279 |
-
| 0.
|
280 |
-
| 0.
|
281 |
-
| 0.
|
282 |
-
| 0.
|
283 |
-
| 0.
|
284 |
-
| 0.
|
285 |
-
| 0.
|
286 |
-
| 0.
|
287 |
-
| 0.
|
288 |
-
| 0.
|
289 |
-
| 0.
|
290 |
-
|
|
291 |
-
| 0.
|
292 |
-
| 0.
|
293 |
-
|
|
294 |
-
| 1.
|
295 |
-
|
|
296 |
-
|
|
297 |
-
|
|
298 |
-
|
|
299 |
-
|
|
300 |
-
|
|
301 |
-
|
|
302 |
-
|
|
303 |
-
|
|
304 |
-
|
|
305 |
-
|
|
306 |
-
|
|
307 |
-
|
|
308 |
-
|
|
309 |
-
|
|
310 |
-
|
|
311 |
-
|
|
312 |
-
|
|
313 |
-
|
|
314 |
-
|
|
315 |
-
|
|
316 |
-
|
|
317 |
-
|
|
318 |
-
|
|
319 |
-
|
|
320 |
-
|
|
321 |
-
|
|
322 |
-
|
|
323 |
-
|
|
324 |
-
|
|
325 |
-
|
|
326 |
-
|
|
327 |
-
|
|
328 |
-
|
|
329 |
-
|
|
330 |
-
|
|
331 |
-
|
|
332 |
-
|
|
333 |
-
|
|
334 |
-
|
|
335 |
-
|
|
336 |
-
|
|
337 |
-
|
|
338 |
-
|
|
339 |
-
|
|
340 |
-
|
|
341 |
-
|
|
342 |
-
|
|
343 |
-
|
|
344 |
-
|
|
345 |
-
|
|
346 |
-
|
|
347 |
-
|
|
348 |
-
|
|
349 |
-
|
|
350 |
-
|
|
351 |
-
|
|
352 |
-
|
|
353 |
-
| 0
|
354 |
-
|
|
355 |
-
|
|
356 |
-
|
|
357 |
-
|
|
358 |
-
|
|
359 |
-
|
|
360 |
-
|
|
361 |
-
|
|
362 |
-
|
|
363 |
-
|
|
364 |
-
|
|
365 |
-
|
|
366 |
-
|
|
367 |
-
|
|
368 |
-
|
|
369 |
-
|
|
370 |
-
|
|
371 |
-
|
|
372 |
-
|
|
373 |
-
|
|
374 |
-
|
|
375 |
-
|
|
376 |
-
|
|
377 |
-
|
|
378 |
-
|
|
379 |
-
|
|
380 |
-
|
|
381 |
-
|
|
382 |
-
|
|
383 |
-
|
|
384 |
-
|
|
385 |
-
|
|
386 |
-
|
|
387 |
-
|
|
388 |
-
|
|
389 |
-
|
|
390 |
-
|
|
391 |
-
|
|
392 |
-
|
|
393 |
-
|
|
394 |
-
|
|
395 |
-
|
|
396 |
-
|
|
397 |
-
|
|
398 |
-
|
|
399 |
-
|
|
400 |
-
|
|
401 |
-
|
|
402 |
-
|
|
403 |
-
|
|
404 |
-
|
|
405 |
-
|
|
406 |
-
|
|
407 |
-
|
|
408 |
-
|
|
409 |
-
|
|
410 |
-
|
|
411 |
-
|
|
412 |
-
|
|
413 |
-
|
|
414 |
-
|
|
415 |
-
|
|
416 |
-
|
|
417 |
-
|
|
418 |
-
|
|
419 |
-
|
|
420 |
-
|
|
421 |
-
|
|
422 |
-
|
|
423 |
-
|
|
424 |
-
|
|
425 |
-
|
|
426 |
-
|
|
427 |
-
|
|
428 |
-
|
|
429 |
-
| 0
|
430 |
-
| 0.2531 | 900 | 0.0001 | 0.0764 |
|
431 |
-
| 0.2812 | 1000 | 0.0 | 0.0877 |
|
432 |
-
| 0.3093 | 1100 | 0.0 | 0.081 |
|
433 |
-
| **0.3375** | **1200** | **0.0001** | **0.0755** |
|
434 |
-
| 0.3656 | 1300 | 0.0001 | 0.0818 |
|
435 |
-
| 0.3937 | 1400 | 0.0001 | 0.0837 |
|
436 |
-
| 0.4218 | 1500 | 0.0001 | 0.0838 |
|
437 |
-
| 0.4499 | 1600 | 0.0 | 0.081 |
|
438 |
-
| 0.4781 | 1700 | 0.0 | 0.0858 |
|
439 |
-
| 0.5062 | 1800 | 0.0001 | 0.0858 |
|
440 |
-
| 0.5343 | 1900 | 0.0003 | 0.0844 |
|
441 |
-
| 0.5624 | 2000 | 0.0001 | 0.0864 |
|
442 |
-
| 0.5906 | 2100 | 0.0 | 0.0842 |
|
443 |
-
| 0.6187 | 2200 | 0.0001 | 0.0847 |
|
444 |
-
| 0.6468 | 2300 | 0.0 | 0.0864 |
|
445 |
-
| 0.6749 | 2400 | 0.0 | 0.0884 |
|
446 |
-
| 0.7030 | 2500 | 0.0 | 0.0906 |
|
447 |
-
| 0.7312 | 2600 | 0.0359 | 0.0863 |
|
448 |
-
| 0.7593 | 2700 | 0.0 | 0.0839 |
|
449 |
-
| 0.7874 | 2800 | 0.0001 | 0.0942 |
|
450 |
-
| 0.8155 | 2900 | 0.0061 | 0.0944 |
|
451 |
-
| 0.8436 | 3000 | 0.0 | 0.0954 |
|
452 |
-
| 0.8718 | 3100 | 0.0 | 0.0888 |
|
453 |
-
| 0.8999 | 3200 | 0.0 | 0.0915 |
|
454 |
-
| 0.9280 | 3300 | 0.0 | 0.093 |
|
455 |
-
| 0.9561 | 3400 | 0.0 | 0.0931 |
|
456 |
-
| 0.9843 | 3500 | 0.0 | 0.0897 |
|
457 |
-
| 0.0003 | 1 | 0.0016 | - |
|
458 |
-
| 0.025 | 100 | 0.0023 | 0.0697 |
|
459 |
-
| 0.05 | 200 | 0.0022 | 0.0732 |
|
460 |
-
| 0.075 | 300 | 0.0007 | 0.0696 |
|
461 |
-
| 0.1 | 400 | 0.0004 | 0.0699 |
|
462 |
-
| 0.125 | 500 | 0.0026 | 0.07 |
|
463 |
-
| 0.15 | 600 | 0.0552 | 0.0709 |
|
464 |
-
| 0.175 | 700 | 0.0022 | 0.0691 |
|
465 |
-
| 0.2 | 800 | 0.0005 | 0.0672 |
|
466 |
-
| 0.225 | 900 | 0.0076 | 0.0677 |
|
467 |
-
| 0.25 | 1000 | 0.0006 | 0.0689 |
|
468 |
-
| 0.275 | 1100 | 0.0002 | 0.0708 |
|
469 |
-
| **0.3** | **1200** | **0.0613** | **0.0659** |
|
470 |
-
| 0.325 | 1300 | 0.0008 | 0.0683 |
|
471 |
-
| 0.35 | 1400 | 0.063 | 0.0678 |
|
472 |
-
| 0.375 | 1500 | 0.0562 | 0.071 |
|
473 |
-
| 0.4 | 1600 | 0.0008 | 0.0684 |
|
474 |
-
| 0.425 | 1700 | 0.0002 | 0.073 |
|
475 |
-
| 0.45 | 1800 | 0.0004 | 0.0719 |
|
476 |
-
| 0.475 | 1900 | 0.0003 | 0.0747 |
|
477 |
-
| 0.5 | 2000 | 0.0002 | 0.0712 |
|
478 |
-
| 0.525 | 2100 | 0.0001 | 0.0742 |
|
479 |
-
| 0.55 | 2200 | 0.0001 | 0.0716 |
|
480 |
-
| 0.575 | 2300 | 0.0019 | 0.0734 |
|
481 |
-
| 0.6 | 2400 | 0.0003 | 0.0748 |
|
482 |
-
| 0.625 | 2500 | 0.0543 | 0.0757 |
|
483 |
-
| 0.65 | 2600 | 0.0009 | 0.0748 |
|
484 |
-
| 0.675 | 2700 | 0.0001 | 0.0709 |
|
485 |
-
| 0.7 | 2800 | 0.0002 | 0.0722 |
|
486 |
-
| 0.725 | 2900 | 0.0005 | 0.0727 |
|
487 |
-
| 0.75 | 3000 | 0.0002 | 0.0755 |
|
488 |
-
| 0.775 | 3100 | 0.0002 | 0.0687 |
|
489 |
-
| 0.8 | 3200 | 0.0022 | 0.0734 |
|
490 |
-
| 0.825 | 3300 | 0.0002 | 0.07 |
|
491 |
-
| 0.85 | 3400 | 0.0001 | 0.0737 |
|
492 |
-
| 0.875 | 3500 | 0.0001 | 0.0694 |
|
493 |
-
| 0.9 | 3600 | 0.0002 | 0.0732 |
|
494 |
-
| 0.925 | 3700 | 0.0002 | 0.0701 |
|
495 |
-
| 0.95 | 3800 | 0.0002 | 0.0714 |
|
496 |
-
| 0.975 | 3900 | 0.0005 | 0.0676 |
|
497 |
-
| 1.0 | 4000 | 0.0001 | 0.074 |
|
498 |
-
| 1.025 | 4100 | 0.0036 | 0.0727 |
|
499 |
-
| 1.05 | 4200 | 0.0001 | 0.0731 |
|
500 |
-
| 1.075 | 4300 | 0.0001 | 0.0711 |
|
501 |
-
| 1.1 | 4400 | 0.0394 | 0.076 |
|
502 |
-
| 1.125 | 4500 | 0.0001 | 0.0746 |
|
503 |
-
| 1.15 | 4600 | 0.0001 | 0.0715 |
|
504 |
-
| 1.175 | 4700 | 0.0003 | 0.0723 |
|
505 |
-
| 1.2 | 4800 | 0.0002 | 0.0743 |
|
506 |
-
| 1.225 | 4900 | 0.0003 | 0.0758 |
|
507 |
-
| 1.25 | 5000 | 0.0088 | 0.0705 |
|
508 |
-
| 1.275 | 5100 | 0.0001 | 0.0748 |
|
509 |
-
| 1.3 | 5200 | 0.0001 | 0.0735 |
|
510 |
-
| 1.325 | 5300 | 0.0002 | 0.0747 |
|
511 |
-
| 1.35 | 5400 | 0.0001 | 0.0706 |
|
512 |
-
| 1.375 | 5500 | 0.0001 | 0.0757 |
|
513 |
-
| 1.4 | 5600 | 0.0001 | 0.0739 |
|
514 |
-
| 1.425 | 5700 | 0.0003 | 0.0752 |
|
515 |
-
| 1.45 | 5800 | 0.0001 | 0.0713 |
|
516 |
-
| 1.475 | 5900 | 0.0038 | 0.0774 |
|
517 |
-
| 1.5 | 6000 | 0.0001 | 0.0748 |
|
518 |
-
| 1.525 | 6100 | 0.0001 | 0.0736 |
|
519 |
-
| 1.55 | 6200 | 0.0003 | 0.0721 |
|
520 |
-
| 1.575 | 6300 | 0.0001 | 0.0764 |
|
521 |
-
| 1.6 | 6400 | 0.0001 | 0.0754 |
|
522 |
-
| 1.625 | 6500 | 0.0058 | 0.0717 |
|
523 |
-
| 1.65 | 6600 | 0.0002 | 0.0724 |
|
524 |
-
| 1.675 | 6700 | 0.0001 | 0.0745 |
|
525 |
-
| 1.7 | 6800 | 0.003 | 0.0765 |
|
526 |
-
| 1.725 | 6900 | 0.0001 | 0.0706 |
|
527 |
-
| 1.75 | 7000 | 0.0 | 0.0747 |
|
528 |
-
| 1.775 | 7100 | 0.0003 | 0.0745 |
|
529 |
-
| 1.8 | 7200 | 0.0042 | 0.0758 |
|
530 |
-
| 1.825 | 7300 | 0.0001 | 0.0717 |
|
531 |
-
| 1.85 | 7400 | 0.0001 | 0.0771 |
|
532 |
-
| 1.875 | 7500 | 0.0002 | 0.0742 |
|
533 |
-
| 1.9 | 7600 | 0.0001 | 0.0751 |
|
534 |
-
| 1.925 | 7700 | 0.0032 | 0.071 |
|
535 |
-
| 1.95 | 7800 | 0.0001 | 0.0768 |
|
536 |
-
| 1.975 | 7900 | 0.0001 | 0.0743 |
|
537 |
-
| 2.0 | 8000 | 0.0001 | 0.0737 |
|
538 |
-
| 2.025 | 8100 | 0.0002 | 0.0722 |
|
539 |
-
| 2.05 | 8200 | 0.0001 | 0.0764 |
|
540 |
-
| 2.075 | 8300 | 0.0 | 0.0759 |
|
541 |
-
| 2.1 | 8400 | 0.0001 | 0.0723 |
|
542 |
-
| 2.125 | 8500 | 0.0 | 0.0727 |
|
543 |
-
| 2.15 | 8600 | 0.0029 | 0.0759 |
|
544 |
-
| 2.175 | 8700 | 0.0 | 0.0786 |
|
545 |
-
| 2.2 | 8800 | 0.0036 | 0.0724 |
|
546 |
-
| 2.225 | 8900 | 0.0001 | 0.077 |
|
547 |
-
| 2.25 | 9000 | 0.0001 | 0.0755 |
|
548 |
-
| 2.275 | 9100 | 0.0001 | 0.0764 |
|
549 |
-
| 2.3 | 9200 | 0.0 | 0.0717 |
|
550 |
-
| 2.325 | 9300 | 0.0001 | 0.0765 |
|
551 |
-
| 2.35 | 9400 | 0.0 | 0.074 |
|
552 |
-
| 2.375 | 9500 | 0.0024 | 0.0753 |
|
553 |
-
| 2.4 | 9600 | 0.0 | 0.0715 |
|
554 |
-
| 2.425 | 9700 | 0.0 | 0.0771 |
|
555 |
-
| 2.45 | 9800 | 0.0001 | 0.0746 |
|
556 |
-
| 2.475 | 9900 | 0.0001 | 0.0734 |
|
557 |
-
| 2.5 | 10000 | 0.0001 | 0.0721 |
|
558 |
-
| 2.525 | 10100 | 0.0001 | 0.0768 |
|
559 |
-
| 2.55 | 10200 | 0.0001 | 0.0774 |
|
560 |
-
| 2.575 | 10300 | 0.0 | 0.0736 |
|
561 |
-
| 2.6 | 10400 | 0.0029 | 0.0746 |
|
562 |
-
| 2.625 | 10500 | 0.0001 | 0.0769 |
|
563 |
-
| 2.65 | 10600 | 0.0001 | 0.0787 |
|
564 |
-
| 2.675 | 10700 | 0.0001 | 0.0718 |
|
565 |
-
| 2.7 | 10800 | 0.0001 | 0.0758 |
|
566 |
-
| 2.725 | 10900 | 0.0001 | 0.0749 |
|
567 |
-
| 2.75 | 11000 | 0.0 | 0.0763 |
|
568 |
-
| 2.775 | 11100 | 0.0001 | 0.0722 |
|
569 |
-
| 2.8 | 11200 | 0.0 | 0.0773 |
|
570 |
-
| 2.825 | 11300 | 0.0024 | 0.0746 |
|
571 |
-
| 2.85 | 11400 | 0.0 | 0.0756 |
|
572 |
-
| 2.875 | 11500 | 0.0 | 0.0718 |
|
573 |
-
| 2.9 | 11600 | 0.0001 | 0.0773 |
|
574 |
-
| 2.925 | 11700 | 0.0001 | 0.0761 |
|
575 |
-
| 2.95 | 11800 | 0.0001 | 0.0752 |
|
576 |
-
| 2.975 | 11900 | 0.0 | 0.074 |
|
577 |
-
| 3.0 | 12000 | 0.0401 | 0.0779 |
|
578 |
-
| 3.025 | 12100 | 0.0 | 0.0782 |
|
579 |
-
| 3.05 | 12200 | 0.0025 | 0.0738 |
|
580 |
-
| 3.075 | 12300 | 0.0001 | 0.0743 |
|
581 |
-
| 3.1 | 12400 | 0.0 | 0.076 |
|
582 |
-
| 3.125 | 12500 | 0.0001 | 0.078 |
|
583 |
-
| 3.15 | 12600 | 0.0048 | 0.0716 |
|
584 |
-
| 3.175 | 12700 | 0.0001 | 0.076 |
|
585 |
-
| 3.2 | 12800 | 0.0 | 0.0745 |
|
586 |
-
| 3.225 | 12900 | 0.0001 | 0.0758 |
|
587 |
-
| 3.25 | 13000 | 0.0 | 0.0715 |
|
588 |
-
| 3.275 | 13100 | 0.0024 | 0.0764 |
|
589 |
-
| 3.3 | 13200 | 0.0001 | 0.0747 |
|
590 |
-
| 3.325 | 13300 | 0.0 | 0.0767 |
|
591 |
-
| 3.35 | 13400 | 0.0001 | 0.0729 |
|
592 |
-
| 3.375 | 13500 | 0.0 | 0.0782 |
|
593 |
-
| 3.4 | 13600 | 0.0 | 0.076 |
|
594 |
-
| 3.425 | 13700 | 0.0 | 0.075 |
|
595 |
-
| 3.45 | 13800 | 0.0001 | 0.0734 |
|
596 |
-
| 3.475 | 13900 | 0.0 | 0.077 |
|
597 |
-
| 3.5 | 14000 | 0.0026 | 0.0768 |
|
598 |
-
| 3.525 | 14100 | 0.0047 | 0.0729 |
|
599 |
-
| 3.55 | 14200 | 0.0 | 0.074 |
|
600 |
-
| 3.575 | 14300 | 0.0001 | 0.0759 |
|
601 |
-
| 3.6 | 14400 | 0.0 | 0.078 |
|
602 |
-
| 3.625 | 14500 | 0.0001 | 0.0716 |
|
603 |
-
| 3.65 | 14600 | 0.0 | 0.0757 |
|
604 |
-
| 3.675 | 14700 | 0.0001 | 0.075 |
|
605 |
-
| 3.7 | 14800 | 0.0045 | 0.0769 |
|
606 |
-
| 3.725 | 14900 | 0.003 | 0.0728 |
|
607 |
-
| 3.75 | 15000 | 0.0 | 0.0779 |
|
608 |
-
| 3.775 | 15100 | 0.0 | 0.0751 |
|
609 |
-
| 3.8 | 15200 | 0.0001 | 0.0765 |
|
610 |
-
| 3.825 | 15300 | 0.0001 | 0.0722 |
|
611 |
-
| 3.85 | 15400 | 0.0 | 0.0778 |
|
612 |
-
| 3.875 | 15500 | 0.0001 | 0.0753 |
|
613 |
-
| 3.9 | 15600 | 0.0001 | 0.0746 |
|
614 |
-
| 3.925 | 15700 | 0.0 | 0.0734 |
|
615 |
-
| 3.95 | 15800 | 0.0026 | 0.0772 |
|
616 |
-
| 3.975 | 15900 | 0.0 | 0.077 |
|
617 |
-
| 4.0 | 16000 | 0.0 | 0.0732 |
|
618 |
-
| 4.025 | 16100 | 0.0 | 0.0739 |
|
619 |
-
| 4.05 | 16200 | 0.0 | 0.076 |
|
620 |
-
| 4.075 | 16300 | 0.0001 | 0.0787 |
|
621 |
-
| 4.1 | 16400 | 0.0047 | 0.0721 |
|
622 |
-
| 4.125 | 16500 | 0.0001 | 0.0765 |
|
623 |
-
| 4.15 | 16600 | 0.0 | 0.0754 |
|
624 |
-
| 4.175 | 16700 | 0.0031 | 0.0769 |
|
625 |
-
| 4.2 | 16800 | 0.0001 | 0.0725 |
|
626 |
-
| 4.225 | 16900 | 0.0 | 0.0776 |
|
627 |
-
| 4.25 | 17000 | 0.0 | 0.0748 |
|
628 |
-
| 4.275 | 17100 | 0.0001 | 0.0763 |
|
629 |
-
| 4.3 | 17200 | 0.0 | 0.0722 |
|
630 |
-
| 4.325 | 17300 | 0.0 | 0.0779 |
|
631 |
-
| 4.35 | 17400 | 0.0 | 0.0756 |
|
632 |
-
| 4.375 | 17500 | 0.0 | 0.0746 |
|
633 |
-
| 4.4 | 17600 | 0.0026 | 0.0733 |
|
634 |
-
| 4.425 | 17700 | 0.0001 | 0.0771 |
|
635 |
-
| 4.45 | 17800 | 0.0 | 0.0773 |
|
636 |
-
| 4.475 | 17900 | 0.0 | 0.0732 |
|
637 |
-
| 4.5 | 18000 | 0.0001 | 0.0742 |
|
638 |
-
| 4.525 | 18100 | 0.0 | 0.0763 |
|
639 |
-
| 4.55 | 18200 | 0.0001 | 0.0786 |
|
640 |
-
| 4.575 | 18300 | 0.0001 | 0.0719 |
|
641 |
-
| 4.6 | 18400 | 0.0 | 0.0763 |
|
642 |
-
| 4.625 | 18500 | 0.0029 | 0.0751 |
|
643 |
-
| 4.65 | 18600 | 0.0 | 0.0766 |
|
644 |
-
| 4.675 | 18700 | 0.0 | 0.0723 |
|
645 |
-
| 4.7 | 18800 | 0.0 | 0.0774 |
|
646 |
-
| 4.725 | 18900 | 0.0001 | 0.0746 |
|
647 |
-
| 4.75 | 19000 | 0.0 | 0.076 |
|
648 |
-
| 4.775 | 19100 | 0.0 | 0.0719 |
|
649 |
-
| 4.8 | 19200 | 0.0001 | 0.0775 |
|
650 |
-
| 4.825 | 19300 | 0.0001 | 0.0753 |
|
651 |
-
| 4.85 | 19400 | 0.0026 | 0.0747 |
|
652 |
-
| 4.875 | 19500 | 0.0 | 0.0734 |
|
653 |
-
| 4.9 | 19600 | 0.0421 | 0.0772 |
|
654 |
-
| 4.925 | 19700 | 0.0001 | 0.0772 |
|
655 |
-
| 4.95 | 19800 | 0.0 | 0.0731 |
|
656 |
-
| 4.975 | 19900 | 0.0001 | 0.0741 |
|
657 |
-
| 5.0 | 20000 | 0.0 | 0.0761 |
|
658 |
|
659 |
* The bold row denotes the saved checkpoint.
|
660 |
### Framework Versions
|
|
|
1 |
---
|
|
|
2 |
library_name: setfit
|
3 |
metrics:
|
4 |
- accuracy
|
|
|
27 |
correspondiente.
|
28 |
inference: true
|
29 |
model-index:
|
30 |
+
- name: SetFit
|
31 |
results:
|
32 |
- task:
|
33 |
type: text-classification
|
|
|
38 |
split: test
|
39 |
metrics:
|
40 |
- type: accuracy
|
41 |
+
value: 0.8
|
42 |
name: Accuracy
|
43 |
---
|
44 |
|
45 |
+
# SetFit
|
46 |
|
47 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
48 |
|
49 |
The model has been trained using an efficient few-shot learning technique that involves:
|
50 |
|
|
|
55 |
|
56 |
### Model Description
|
57 |
- **Model Type:** SetFit
|
58 |
+
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
|
59 |
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
60 |
- **Maximum Sequence Length:** 512 tokens
|
61 |
- **Number of Classes:** 20 classes
|
|
|
98 |
### Metrics
|
99 |
| Label | Accuracy |
|
100 |
|:--------|:---------|
|
101 |
+
| **all** | 0.8 |
|
102 |
|
103 |
## Uses
|
104 |
|
|
|
177 |
|
178 |
### Training Hyperparameters
|
179 |
- batch_size: (16, 16)
|
180 |
+
- num_epochs: (10, 10)
|
181 |
- max_steps: -1
|
182 |
- sampling_strategy: oversampling
|
|
|
183 |
- body_learning_rate: (1e-06, 1e-06)
|
184 |
+
- head_learning_rate: 0.003
|
185 |
- loss: CosineSimilarityLoss
|
186 |
- distance_metric: cosine_distance
|
187 |
- margin: 0.25
|
188 |
- end_to_end: True
|
189 |
- use_amp: True
|
190 |
- warmup_proportion: 0.1
|
191 |
+
- l2_weight: 0.001
|
192 |
- seed: 42
|
193 |
- eval_max_steps: 100
|
194 |
- load_best_model_at_end: True
|
195 |
|
196 |
### Training Results
|
197 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
198 |
+
|:----------:|:-------:|:-------------:|:---------------:|
|
199 |
+
| 0.0007 | 1 | 0.0031 | - |
|
200 |
+
| **0.0658** | **100** | **0.0003** | **0.067** |
|
201 |
+
| 0.1316 | 200 | 0.0001 | 0.0717 |
|
202 |
+
| 0.1974 | 300 | 0.0001 | 0.0711 |
|
203 |
+
| 0.2632 | 400 | 0.0003 | 0.0721 |
|
204 |
+
| 0.3289 | 500 | 0.0021 | 0.0667 |
|
205 |
+
| 0.3947 | 600 | 0.0001 | 0.0611 |
|
206 |
+
| 0.4605 | 700 | 0.0002 | 0.0672 |
|
207 |
+
| 0.5263 | 800 | 0.0001 | 0.0777 |
|
208 |
+
| 0.5921 | 900 | 0.0001 | 0.067 |
|
209 |
+
| 0.6579 | 1000 | 0.0001 | 0.0687 |
|
210 |
+
| 0.7237 | 1100 | 0.0 | 0.0661 |
|
211 |
+
| 0.7895 | 1200 | 0.005 | 0.0695 |
|
212 |
+
| 0.8553 | 1300 | 0.0004 | 0.0661 |
|
213 |
+
| 0.9211 | 1400 | 0.0019 | 0.0667 |
|
214 |
+
| 0.9868 | 1500 | 0.0001 | 0.0672 |
|
215 |
+
| 1.0526 | 1600 | 0.0001 | 0.0714 |
|
216 |
+
| 1.1184 | 1700 | 0.0001 | 0.0687 |
|
217 |
+
| 1.1842 | 1800 | 0.0001 | 0.0723 |
|
218 |
+
| 1.25 | 1900 | 0.0 | 0.0722 |
|
219 |
+
| 1.3158 | 2000 | 0.0001 | 0.0728 |
|
220 |
+
| 1.3816 | 2100 | 0.0 | 0.0713 |
|
221 |
+
| 1.4474 | 2200 | 0.0 | 0.0733 |
|
222 |
+
| 1.5132 | 2300 | 0.0025 | 0.0719 |
|
223 |
+
| 1.5789 | 2400 | 0.0 | 0.0708 |
|
224 |
+
| 1.6447 | 2500 | 0.0 | 0.0722 |
|
225 |
+
| 1.7105 | 2600 | 0.0 | 0.0723 |
|
226 |
+
| 1.7763 | 2700 | 0.0 | 0.069 |
|
227 |
+
| 1.8421 | 2800 | 0.0 | 0.0703 |
|
228 |
+
| 1.9079 | 2900 | 0.0 | 0.0722 |
|
229 |
+
| 1.9737 | 3000 | 0.0001 | 0.0701 |
|
230 |
+
| 2.0395 | 3100 | 0.0 | 0.0691 |
|
231 |
+
| 2.1053 | 3200 | 0.0024 | 0.0706 |
|
232 |
+
| 2.1711 | 3300 | 0.0001 | 0.0716 |
|
233 |
+
| 2.2368 | 3400 | 0.0001 | 0.0886 |
|
234 |
+
| 2.3026 | 3500 | 0.0011 | 0.0734 |
|
235 |
+
| 2.3684 | 3600 | 0.0001 | 0.0875 |
|
236 |
+
| 2.4342 | 3700 | 0.0001 | 0.0809 |
|
237 |
+
| 2.5 | 3800 | 0.0 | 0.0818 |
|
238 |
+
| 2.5658 | 3900 | 0.0001 | 0.0829 |
|
239 |
+
| 2.6316 | 4000 | 0.0 | 0.0833 |
|
240 |
+
| 2.6974 | 4100 | 0.0036 | 0.0841 |
|
241 |
+
| 2.7632 | 4200 | 0.0 | 0.0833 |
|
242 |
+
| 2.8289 | 4300 | 0.0 | 0.0831 |
|
243 |
+
| 2.8947 | 4400 | 0.0374 | 0.083 |
|
244 |
+
| 2.9605 | 4500 | 0.0 | 0.083 |
|
245 |
+
| 3.0263 | 4600 | 0.0001 | 0.0831 |
|
246 |
+
| 3.0921 | 4700 | 0.0 | 0.0829 |
|
247 |
+
| 3.1579 | 4800 | 0.0 | 0.0828 |
|
248 |
+
| 3.2237 | 4900 | 0.0 | 0.0828 |
|
249 |
+
| 3.2895 | 5000 | 0.0068 | 0.0829 |
|
250 |
+
| 3.3553 | 5100 | 0.0 | 0.0826 |
|
251 |
+
| 3.4211 | 5200 | 0.0 | 0.0827 |
|
252 |
+
| 3.4868 | 5300 | 0.0 | 0.0824 |
|
253 |
+
| 3.5526 | 5400 | 0.0 | 0.0823 |
|
254 |
+
| 3.6184 | 5500 | 0.0 | 0.0822 |
|
255 |
+
| 3.6842 | 5600 | 0.0 | 0.0821 |
|
256 |
+
| 3.75 | 5700 | 0.0 | 0.0822 |
|
257 |
+
| 3.8158 | 5800 | 0.0 | 0.082 |
|
258 |
+
| 3.8816 | 5900 | 0.0032 | 0.0819 |
|
259 |
+
| 3.9474 | 6000 | 0.0 | 0.0822 |
|
260 |
+
| 4.0132 | 6100 | 0.0 | 0.0824 |
|
261 |
+
| 4.0789 | 6200 | 0.0 | 0.0822 |
|
262 |
+
| 4.1447 | 6300 | 0.0 | 0.0819 |
|
263 |
+
| 4.2105 | 6400 | 0.0 | 0.0822 |
|
264 |
+
| 4.2763 | 6500 | 0.0057 | 0.0824 |
|
265 |
+
| 4.3421 | 6600 | 0.0 | 0.0824 |
|
266 |
+
| 4.4079 | 6700 | 0.0 | 0.0824 |
|
267 |
+
| 4.4737 | 6800 | 0.0022 | 0.0822 |
|
268 |
+
| 4.5395 | 6900 | 0.0 | 0.0822 |
|
269 |
+
| 4.6053 | 7000 | 0.0 | 0.0823 |
|
270 |
+
| 4.6711 | 7100 | 0.0 | 0.0822 |
|
271 |
+
| 4.7368 | 7200 | 0.0034 | 0.0822 |
|
272 |
+
| 4.8026 | 7300 | 0.0 | 0.0822 |
|
273 |
+
| 4.8684 | 7400 | 0.0 | 0.0822 |
|
274 |
+
| 4.9342 | 7500 | 0.0 | 0.0822 |
|
275 |
+
| 5.0 | 7600 | 0.0 | 0.0822 |
|
276 |
+
| 0.0007 | 1 | 0.0018 | - |
|
277 |
+
| **0.0658** | **100** | **0.0002** | **0.0612** |
|
278 |
+
| 0.1316 | 200 | 0.0002 | 0.0613 |
|
279 |
+
| 0.1974 | 300 | 0.0002 | 0.0615 |
|
280 |
+
| 0.2632 | 400 | 0.0 | 0.0619 |
|
281 |
+
| 0.3289 | 500 | 0.0021 | 0.0626 |
|
282 |
+
| 0.3947 | 600 | 0.0001 | 0.0628 |
|
283 |
+
| 0.4605 | 700 | 0.0001 | 0.0633 |
|
284 |
+
| 0.5263 | 800 | 0.0001 | 0.064 |
|
285 |
+
| 0.5921 | 900 | 0.0001 | 0.0635 |
|
286 |
+
| 0.6579 | 1000 | 0.0001 | 0.0645 |
|
287 |
+
| 0.7237 | 1100 | 0.0001 | 0.0659 |
|
288 |
+
| 0.7895 | 1200 | 0.0055 | 0.0662 |
|
289 |
+
| 0.8553 | 1300 | 0.0001 | 0.0667 |
|
290 |
+
| 0.9211 | 1400 | 0.0032 | 0.0673 |
|
291 |
+
| 0.9868 | 1500 | 0.0001 | 0.067 |
|
292 |
+
| 1.0526 | 1600 | 0.0001 | 0.0668 |
|
293 |
+
| 1.1184 | 1700 | 0.0001 | 0.0667 |
|
294 |
+
| 1.1842 | 1800 | 0.0001 | 0.0664 |
|
295 |
+
| 1.25 | 1900 | 0.0001 | 0.0667 |
|
296 |
+
| 1.3158 | 2000 | 0.0 | 0.0674 |
|
297 |
+
| 1.3816 | 2100 | 0.0001 | 0.0667 |
|
298 |
+
| 1.4474 | 2200 | 0.0 | 0.0669 |
|
299 |
+
| 1.5132 | 2300 | 0.0028 | 0.0669 |
|
300 |
+
| 1.5789 | 2400 | 0.0001 | 0.0671 |
|
301 |
+
| 1.6447 | 2500 | 0.0001 | 0.0676 |
|
302 |
+
| 1.7105 | 2600 | 0.0001 | 0.0689 |
|
303 |
+
| 1.7763 | 2700 | 0.0001 | 0.069 |
|
304 |
+
| 1.8421 | 2800 | 0.0001 | 0.0691 |
|
305 |
+
| 1.9079 | 2900 | 0.0001 | 0.0696 |
|
306 |
+
| 1.9737 | 3000 | 0.0001 | 0.0688 |
|
307 |
+
| 2.0395 | 3100 | 0.0 | 0.0678 |
|
308 |
+
| 2.1053 | 3200 | 0.0027 | 0.0677 |
|
309 |
+
| 2.1711 | 3300 | 0.0001 | 0.0675 |
|
310 |
+
| 2.2368 | 3400 | 0.0 | 0.0676 |
|
311 |
+
| 2.3026 | 3500 | 0.0001 | 0.068 |
|
312 |
+
| 2.3684 | 3600 | 0.0001 | 0.0672 |
|
313 |
+
| 2.4342 | 3700 | 0.0 | 0.0669 |
|
314 |
+
| 2.5 | 3800 | 0.0 | 0.0667 |
|
315 |
+
| 2.5658 | 3900 | 0.0 | 0.0673 |
|
316 |
+
| 2.6316 | 4000 | 0.0 | 0.0672 |
|
317 |
+
| 2.6974 | 4100 | 0.0032 | 0.0689 |
|
318 |
+
| 2.7632 | 4200 | 0.0 | 0.0691 |
|
319 |
+
| 2.8289 | 4300 | 0.0001 | 0.0693 |
|
320 |
+
| 2.8947 | 4400 | 0.0388 | 0.0692 |
|
321 |
+
| 2.9605 | 4500 | 0.0001 | 0.0691 |
|
322 |
+
| 3.0263 | 4600 | 0.0 | 0.0683 |
|
323 |
+
| 3.0921 | 4700 | 0.0 | 0.0685 |
|
324 |
+
| 3.1579 | 4800 | 0.0001 | 0.0681 |
|
325 |
+
| 3.2237 | 4900 | 0.0 | 0.0677 |
|
326 |
+
| 3.2895 | 5000 | 0.0081 | 0.0684 |
|
327 |
+
| 3.3553 | 5100 | 0.0 | 0.0685 |
|
328 |
+
| 3.4211 | 5200 | 0.0 | 0.0681 |
|
329 |
+
| 3.4868 | 5300 | 0.0001 | 0.0683 |
|
330 |
+
| 3.5526 | 5400 | 0.0001 | 0.0681 |
|
331 |
+
| 3.6184 | 5500 | 0.0 | 0.0675 |
|
332 |
+
| 3.6842 | 5600 | 0.0 | 0.0687 |
|
333 |
+
| 3.75 | 5700 | 0.0001 | 0.0692 |
|
334 |
+
| 3.8158 | 5800 | 0.0 | 0.0695 |
|
335 |
+
| 3.8816 | 5900 | 0.0038 | 0.069 |
|
336 |
+
| 3.9474 | 6000 | 0.0001 | 0.069 |
|
337 |
+
| 4.0132 | 6100 | 0.0 | 0.0684 |
|
338 |
+
| 4.0789 | 6200 | 0.0001 | 0.0688 |
|
339 |
+
| 4.1447 | 6300 | 0.0 | 0.0682 |
|
340 |
+
| 4.2105 | 6400 | 0.0 | 0.0677 |
|
341 |
+
| 4.2763 | 6500 | 0.0049 | 0.0678 |
|
342 |
+
| 4.3421 | 6600 | 0.0001 | 0.068 |
|
343 |
+
| 4.4079 | 6700 | 0.0 | 0.0679 |
|
344 |
+
| 4.4737 | 6800 | 0.0029 | 0.0679 |
|
345 |
+
| 4.5395 | 6900 | 0.0 | 0.0684 |
|
346 |
+
| 4.6053 | 7000 | 0.0 | 0.0678 |
|
347 |
+
| 4.6711 | 7100 | 0.0 | 0.0688 |
|
348 |
+
| 4.7368 | 7200 | 0.004 | 0.0695 |
|
349 |
+
| 4.8026 | 7300 | 0.0 | 0.0696 |
|
350 |
+
| 4.8684 | 7400 | 0.0 | 0.0695 |
|
351 |
+
| 4.9342 | 7500 | 0.0 | 0.0695 |
|
352 |
+
| 5.0 | 7600 | 0.0 | 0.0691 |
|
353 |
+
| 5.0658 | 7700 | 0.0033 | 0.0691 |
|
354 |
+
| 5.1316 | 7800 | 0.0 | 0.0691 |
|
355 |
+
| 5.1974 | 7900 | 0.0 | 0.0688 |
|
356 |
+
| 5.2632 | 8000 | 0.0 | 0.0689 |
|
357 |
+
| 5.3289 | 8100 | 0.0001 | 0.0689 |
|
358 |
+
| 5.3947 | 8200 | 0.0 | 0.0688 |
|
359 |
+
| 5.4605 | 8300 | 0.0 | 0.0685 |
|
360 |
+
| 5.5263 | 8400 | 0.0 | 0.0688 |
|
361 |
+
| 5.5921 | 8500 | 0.0 | 0.0683 |
|
362 |
+
| 5.6579 | 8600 | 0.003 | 0.0688 |
|
363 |
+
| 5.7237 | 8700 | 0.0 | 0.0698 |
|
364 |
+
| 5.7895 | 8800 | 0.0037 | 0.0701 |
|
365 |
+
| 5.8553 | 8900 | 0.0 | 0.0701 |
|
366 |
+
| 5.9211 | 9000 | 0.0001 | 0.0695 |
|
367 |
+
| 5.9868 | 9100 | 0.0001 | 0.0697 |
|
368 |
+
| 6.0526 | 9200 | 0.0 | 0.0694 |
|
369 |
+
| 6.1184 | 9300 | 0.0 | 0.0689 |
|
370 |
+
| 6.1842 | 9400 | 0.0 | 0.0686 |
|
371 |
+
| 6.25 | 9500 | 0.0025 | 0.0686 |
|
372 |
+
| 6.3158 | 9600 | 0.0 | 0.069 |
|
373 |
+
| 6.3816 | 9700 | 0.0 | 0.069 |
|
374 |
+
| 6.4474 | 9800 | 0.0 | 0.0687 |
|
375 |
+
| 6.5132 | 9900 | 0.0001 | 0.0683 |
|
376 |
+
| 6.5789 | 10000 | 0.0 | 0.0684 |
|
377 |
+
| 6.6447 | 10100 | 0.0 | 0.0684 |
|
378 |
+
| 6.7105 | 10200 | 0.0001 | 0.069 |
|
379 |
+
| 6.7763 | 10300 | 0.0 | 0.0694 |
|
380 |
+
| 6.8421 | 10400 | 0.0028 | 0.0696 |
|
381 |
+
| 6.9079 | 10500 | 0.0 | 0.0697 |
|
382 |
+
| 6.9737 | 10600 | 0.0 | 0.0697 |
|
383 |
+
| 7.0395 | 10700 | 0.0 | 0.0694 |
|
384 |
+
| 7.1053 | 10800 | 0.0 | 0.0692 |
|
385 |
+
| 7.1711 | 10900 | 0.0 | 0.069 |
|
386 |
+
| 7.2368 | 11000 | 0.0 | 0.0691 |
|
387 |
+
| 7.3026 | 11100 | 0.0 | 0.0691 |
|
388 |
+
| 7.3684 | 11200 | 0.0 | 0.0691 |
|
389 |
+
| 7.4342 | 11300 | 0.0025 | 0.069 |
|
390 |
+
| 7.5 | 11400 | 0.0 | 0.0687 |
|
391 |
+
| 7.5658 | 11500 | 0.0 | 0.0688 |
|
392 |
+
| 7.6316 | 11600 | 0.0 | 0.0688 |
|
393 |
+
| 7.6974 | 11700 | 0.0001 | 0.0691 |
|
394 |
+
| 7.7632 | 11800 | 0.0 | 0.0692 |
|
395 |
+
| 7.8289 | 11900 | 0.0001 | 0.0692 |
|
396 |
+
| 7.8947 | 12000 | 0.0405 | 0.0693 |
|
397 |
+
| 7.9605 | 12100 | 0.0 | 0.0695 |
|
398 |
+
| 8.0263 | 12200 | 0.0029 | 0.0694 |
|
399 |
+
| 8.0921 | 12300 | 0.0001 | 0.0693 |
|
400 |
+
| 8.1579 | 12400 | 0.0 | 0.0692 |
|
401 |
+
| 8.2237 | 12500 | 0.0001 | 0.0691 |
|
402 |
+
| 8.2895 | 12600 | 0.0045 | 0.0693 |
|
403 |
+
| 8.3553 | 12700 | 0.0 | 0.0693 |
|
404 |
+
| 8.4211 | 12800 | 0.0 | 0.0692 |
|
405 |
+
| 8.4868 | 12900 | 0.0 | 0.0691 |
|
406 |
+
| 8.5526 | 13000 | 0.0 | 0.0691 |
|
407 |
+
| 8.6184 | 13100 | 0.0026 | 0.069 |
|
408 |
+
| 8.6842 | 13200 | 0.0 | 0.0692 |
|
409 |
+
| 8.75 | 13300 | 0.0 | 0.0694 |
|
410 |
+
| 8.8158 | 13400 | 0.0 | 0.0694 |
|
411 |
+
| 8.8816 | 13500 | 0.0 | 0.0693 |
|
412 |
+
| 8.9474 | 13600 | 0.0 | 0.0694 |
|
413 |
+
| 9.0132 | 13700 | 0.0 | 0.0693 |
|
414 |
+
| 9.0789 | 13800 | 0.0 | 0.0693 |
|
415 |
+
| 9.1447 | 13900 | 0.0 | 0.0692 |
|
416 |
+
| 9.2105 | 14000 | 0.003 | 0.0692 |
|
417 |
+
| 9.2763 | 14100 | 0.0044 | 0.0692 |
|
418 |
+
| 9.3421 | 14200 | 0.0 | 0.0692 |
|
419 |
+
| 9.4079 | 14300 | 0.0 | 0.0692 |
|
420 |
+
| 9.4737 | 14400 | 0.0 | 0.0691 |
|
421 |
+
| 9.5395 | 14500 | 0.0 | 0.0691 |
|
422 |
+
| 9.6053 | 14600 | 0.0 | 0.0691 |
|
423 |
+
| 9.6711 | 14700 | 0.0 | 0.0691 |
|
424 |
+
| 9.7368 | 14800 | 0.0043 | 0.0692 |
|
425 |
+
| 9.8026 | 14900 | 0.0028 | 0.0692 |
|
426 |
+
| 9.8684 | 15000 | 0.0 | 0.0692 |
|
427 |
+
| 9.9342 | 15100 | 0.0 | 0.0692 |
|
428 |
+
| 10.0 | 15200 | 0.0 | 0.0692 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
|
430 |
* The bold row denotes the saved checkpoint.
|
431 |
### Framework Versions
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "results/
|
3 |
"architectures": [
|
4 |
"RobertaModel"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "results/step_100",
|
3 |
"architectures": [
|
4 |
"RobertaModel"
|
5 |
],
|
config_setfit.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
-
"
|
3 |
-
"
|
4 |
}
|
|
|
1 |
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 737406824
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53c262c6065a8f80f17c0a55b60b32037fc341ee214e1db3802f5aad4d696f6e
|
3 |
size 737406824
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 124039
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1217582c47bee2a4b06d815b1f5c0cf2d5c49cec8094f1a5801de7d638548e7b
|
3 |
size 124039
|