desarrolloasesoreslocales commited on
Commit
f03dbe8
·
verified ·
1 Parent(s): 57d75f2

Push model using huggingface_hub.

Browse files
Files changed (5) hide show
  1. README.md +241 -470
  2. config.json +1 -1
  3. config_setfit.json +2 -2
  4. model.safetensors +1 -1
  5. model_head.pkl +1 -1
README.md CHANGED
@@ -1,5 +1,4 @@
1
  ---
2
- base_model: desarrolloasesoreslocales/bert-leg-al-corpus
3
  library_name: setfit
4
  metrics:
5
  - accuracy
@@ -28,7 +27,7 @@ widget:
28
  correspondiente.
29
  inference: true
30
  model-index:
31
- - name: SetFit with desarrolloasesoreslocales/bert-leg-al-corpus
32
  results:
33
  - task:
34
  type: text-classification
@@ -39,13 +38,13 @@ model-index:
39
  split: test
40
  metrics:
41
  - type: accuracy
42
- value: 0.7875
43
  name: Accuracy
44
  ---
45
 
46
- # SetFit with desarrolloasesoreslocales/bert-leg-al-corpus
47
 
48
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [desarrolloasesoreslocales/bert-leg-al-corpus](https://huggingface.co/desarrolloasesoreslocales/bert-leg-al-corpus) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
49
 
50
  The model has been trained using an efficient few-shot learning technique that involves:
51
 
@@ -56,7 +55,7 @@ The model has been trained using an efficient few-shot learning technique that i
56
 
57
  ### Model Description
58
  - **Model Type:** SetFit
59
- - **Sentence Transformer body:** [desarrolloasesoreslocales/bert-leg-al-corpus](https://huggingface.co/desarrolloasesoreslocales/bert-leg-al-corpus)
60
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
61
  - **Maximum Sequence Length:** 512 tokens
62
  - **Number of Classes:** 20 classes
@@ -99,7 +98,7 @@ The model has been trained using an efficient few-shot learning technique that i
99
  ### Metrics
100
  | Label | Accuracy |
101
  |:--------|:---------|
102
- | **all** | 0.7875 |
103
 
104
  ## Uses
105
 
@@ -178,483 +177,255 @@ preds = model("procedo al estacionamiento por autorización del agente 12289 (Po
178
 
179
  ### Training Hyperparameters
180
  - batch_size: (16, 16)
181
- - num_epochs: (5, 5)
182
  - max_steps: -1
183
  - sampling_strategy: oversampling
184
- - num_iterations: 200
185
  - body_learning_rate: (1e-06, 1e-06)
186
- - head_learning_rate: 1e-05
187
  - loss: CosineSimilarityLoss
188
  - distance_metric: cosine_distance
189
  - margin: 0.25
190
  - end_to_end: True
191
  - use_amp: True
192
  - warmup_proportion: 0.1
 
193
  - seed: 42
194
  - eval_max_steps: 100
195
  - load_best_model_at_end: True
196
 
197
  ### Training Results
198
- | Epoch | Step | Training Loss | Validation Loss |
199
- |:----------:|:--------:|:-------------:|:---------------:|
200
- | 0.0002 | 1 | 0.3727 | - |
201
- | 0.0167 | 100 | 0.1507 | 0.1304 |
202
- | 0.0333 | 200 | 0.098 | 0.0856 |
203
- | 0.05 | 300 | 0.0779 | 0.0789 |
204
- | 0.0667 | 400 | 0.0123 | 0.0652 |
205
- | 0.0833 | 500 | 0.0087 | 0.0724 |
206
- | 0.1 | 600 | 0.0248 | 0.0612 |
207
- | 0.1167 | 700 | 0.0015 | 0.0676 |
208
- | 0.1333 | 800 | 0.0024 | 0.0652 |
209
- | 0.15 | 900 | 0.001 | 0.0725 |
210
- | 0.1667 | 1000 | 0.0009 | 0.0663 |
211
- | 0.1833 | 1100 | 0.0004 | 0.0677 |
212
- | **0.2** | **1200** | **0.0152** | **0.0711** |
213
- | 0.2167 | 1300 | 0.0003 | 0.0767 |
214
- | 0.2333 | 1400 | 0.0019 | 0.0776 |
215
- | 0.25 | 1500 | 0.0003 | 0.0741 |
216
- | 0.2667 | 1600 | 0.0002 | 0.0735 |
217
- | 0.2833 | 1700 | 0.0003 | 0.0746 |
218
- | 0.3 | 1800 | 0.0002 | 0.0744 |
219
- | 0.3167 | 1900 | 0.0002 | 0.0724 |
220
- | 0.3333 | 2000 | 0.0004 | 0.0707 |
221
- | 0.35 | 2100 | 0.0001 | 0.0703 |
222
- | 0.3667 | 2200 | 0.0001 | 0.0756 |
223
- | 0.3833 | 2300 | 0.0025 | 0.0726 |
224
- | 0.4 | 2400 | 0.0001 | 0.0743 |
225
- | 0.4167 | 2500 | 0.0002 | 0.0714 |
226
- | 0.4333 | 2600 | 0.0002 | 0.0736 |
227
- | 0.45 | 2700 | 0.0001 | 0.0759 |
228
- | 0.4667 | 2800 | 0.0001 | 0.0728 |
229
- | 0.4833 | 2900 | 0.0001 | 0.0723 |
230
- | 0.5 | 3000 | 0.0003 | 0.0787 |
231
- | 0.5167 | 3100 | 0.0001 | 0.0742 |
232
- | 0.5333 | 3200 | 0.0024 | 0.0745 |
233
- | 0.55 | 3300 | 0.0001 | 0.0768 |
234
- | 0.5667 | 3400 | 0.0001 | 0.0733 |
235
- | 0.5833 | 3500 | 0.0002 | 0.0748 |
236
- | 0.6 | 3600 | 0.0001 | 0.0756 |
237
- | 0.6167 | 3700 | 0.0001 | 0.0753 |
238
- | 0.6333 | 3800 | 0.0001 | 0.0723 |
239
- | 0.65 | 3900 | 0.0001 | 0.0739 |
240
- | 0.6667 | 4000 | 0.0001 | 0.0725 |
241
- | 0.6833 | 4100 | 0.0036 | 0.0732 |
242
- | 0.7 | 4200 | 0.0001 | 0.076 |
243
- | 0.7167 | 4300 | 0.0001 | 0.0761 |
244
- | 0.7333 | 4400 | 0.0356 | 0.0737 |
245
- | 0.75 | 4500 | 0.0001 | 0.0772 |
246
- | 0.7667 | 4600 | 0.0001 | 0.0775 |
247
- | 0.7833 | 4700 | 0.0001 | 0.0767 |
248
- | 0.8 | 4800 | 0.0001 | 0.0742 |
249
- | 0.8167 | 4900 | 0.0001 | 0.0747 |
250
- | 0.8333 | 5000 | 0.0078 | 0.0739 |
251
- | 0.85 | 5100 | 0.0001 | 0.0755 |
252
- | 0.8667 | 5200 | 0.0 | 0.0792 |
253
- | 0.8833 | 5300 | 0.0001 | 0.0755 |
254
- | 0.9 | 5400 | 0.0001 | 0.0754 |
255
- | 0.9167 | 5500 | 0.0 | 0.0768 |
256
- | 0.9333 | 5600 | 0.0001 | 0.0774 |
257
- | 0.95 | 5700 | 0.0001 | 0.0749 |
258
- | 0.9667 | 5800 | 0.0 | 0.0742 |
259
- | 0.9833 | 5900 | 0.0035 | 0.0734 |
260
- | 1.0 | 6000 | 0.0001 | 0.0753 |
261
- | 0.0006 | 1 | 0.0135 | - |
262
- | 0.0625 | 100 | 0.0198 | 0.0637 |
263
- | 0.125 | 200 | 0.001 | 0.0635 |
264
- | 0.1875 | 300 | 0.0243 | 0.0638 |
265
- | 0.25 | 400 | 0.0056 | 0.0623 |
266
- | 0.3125 | 500 | 0.002 | 0.0622 |
267
- | 0.375 | 600 | 0.0023 | 0.067 |
268
- | 0.4375 | 700 | 0.0073 | 0.0633 |
269
- | 0.5 | 800 | 0.0013 | 0.0639 |
270
- | 0.5625 | 900 | 0.0024 | 0.0655 |
271
- | 0.625 | 1000 | 0.0017 | 0.0639 |
272
- | 0.6875 | 1100 | 0.0022 | 0.0663 |
273
- | **0.75** | **1200** | **0.0074** | **0.0639** |
274
- | 0.8125 | 1300 | 0.0032 | 0.0655 |
275
- | 0.875 | 1400 | 0.0011 | 0.0664 |
276
- | 0.9375 | 1500 | 0.0301 | 0.0644 |
277
- | 1.0 | 1600 | 0.0054 | 0.0643 |
278
- | 0.0006 | 1 | 0.0051 | - |
279
- | 0.0625 | 100 | 0.0042 | 0.0634 |
280
- | 0.125 | 200 | 0.0011 | 0.0658 |
281
- | 0.1875 | 300 | 0.0178 | 0.0656 |
282
- | 0.25 | 400 | 0.0042 | 0.0641 |
283
- | 0.3125 | 500 | 0.0022 | 0.0648 |
284
- | 0.375 | 600 | 0.0013 | 0.0685 |
285
- | 0.4375 | 700 | 0.0031 | 0.0651 |
286
- | 0.5 | 800 | 0.002 | 0.0659 |
287
- | 0.5625 | 900 | 0.0026 | 0.0672 |
288
- | 0.625 | 1000 | 0.0022 | 0.0658 |
289
- | 0.6875 | 1100 | 0.0017 | 0.0679 |
290
- | **0.75** | **1200** | **0.0034** | **0.0652** |
291
- | 0.8125 | 1300 | 0.0021 | 0.0675 |
292
- | 0.875 | 1400 | 0.0007 | 0.0678 |
293
- | 0.9375 | 1500 | 0.0189 | 0.0661 |
294
- | 1.0 | 1600 | 0.0046 | 0.0665 |
295
- | 0.0006 | 1 | 0.0038 | - |
296
- | 0.0562 | 100 | 0.0008 | 0.0661 |
297
- | 0.1125 | 200 | 0.0019 | 0.0684 |
298
- | 0.1687 | 300 | 0.001 | 0.069 |
299
- | 0.2250 | 400 | 0.0015 | 0.0651 |
300
- | 0.2812 | 500 | 0.002 | 0.068 |
301
- | 0.3375 | 600 | 0.0023 | 0.0704 |
302
- | 0.3937 | 700 | 0.0009 | 0.068 |
303
- | 0.4499 | 800 | 0.0011 | 0.0689 |
304
- | 0.5062 | 900 | 0.0009 | 0.069 |
305
- | 0.5624 | 1000 | 0.0014 | 0.0692 |
306
- | 0.6187 | 1100 | 0.0061 | 0.0696 |
307
- | **0.6749** | **1200** | **0.0014** | **0.0683** |
308
- | 0.7312 | 1300 | 0.0109 | 0.071 |
309
- | 0.7874 | 1400 | 0.0016 | 0.0715 |
310
- | 0.8436 | 1500 | 0.001 | 0.0695 |
311
- | 0.8999 | 1600 | 0.0012 | 0.0698 |
312
- | 0.9561 | 1700 | 0.0012 | 0.0713 |
313
- | 0.0006 | 1 | 0.0029 | - |
314
- | 0.0562 | 100 | 0.0008 | 0.077 |
315
- | 0.1125 | 200 | 0.0157 | 0.0892 |
316
- | 0.1687 | 300 | 0.0016 | 0.0725 |
317
- | 0.2250 | 400 | 0.0003 | 0.0643 |
318
- | 0.2812 | 500 | 0.0003 | 0.0689 |
319
- | 0.3375 | 600 | 0.0002 | 0.0704 |
320
- | 0.3937 | 700 | 0.0001 | 0.0681 |
321
- | 0.4499 | 800 | 0.0001 | 0.0679 |
322
- | 0.5062 | 900 | 0.0003 | 0.0668 |
323
- | 0.5624 | 1000 | 0.0001 | 0.0699 |
324
- | 0.6187 | 1100 | 0.0001 | 0.0709 |
325
- | **0.6749** | **1200** | **0.0001** | **0.0675** |
326
- | 0.7312 | 1300 | 0.0002 | 0.0724 |
327
- | 0.7874 | 1400 | 0.0004 | 0.0732 |
328
- | 0.8436 | 1500 | 0.0001 | 0.0715 |
329
- | 0.8999 | 1600 | 0.0001 | 0.0698 |
330
- | 0.9561 | 1700 | 0.0001 | 0.072 |
331
- | 0.0006 | 1 | 0.0023 | - |
332
- | 0.0562 | 100 | 0.0003 | 0.0672 |
333
- | 0.1125 | 200 | 0.0005 | 0.073 |
334
- | 0.1687 | 300 | 0.0109 | 0.0665 |
335
- | 0.2250 | 400 | 0.0002 | 0.0661 |
336
- | 0.2812 | 500 | 0.0004 | 0.0754 |
337
- | 0.3375 | 600 | 0.0001 | 0.0765 |
338
- | 0.3937 | 700 | 0.0001 | 0.0735 |
339
- | 0.4499 | 800 | 0.0002 | 0.0736 |
340
- | 0.5062 | 900 | 0.0001 | 0.0716 |
341
- | 0.5624 | 1000 | 0.0001 | 0.0758 |
342
- | 0.6187 | 1100 | 0.0001 | 0.0762 |
343
- | **0.6749** | **1200** | **0.0001** | **0.0702** |
344
- | 0.7312 | 1300 | 0.0001 | 0.0755 |
345
- | 0.7874 | 1400 | 0.0 | 0.0751 |
346
- | 0.8436 | 1500 | 0.0001 | 0.0705 |
347
- | 0.8999 | 1600 | 0.0001 | 0.0734 |
348
- | 0.9561 | 1700 | 0.0001 | 0.0728 |
349
- | 0.0006 | 1 | 0.0048 | - |
350
- | 0.0562 | 100 | 0.0003 | 0.0683 |
351
- | 0.1125 | 200 | 0.0001 | 0.0839 |
352
- | 0.1687 | 300 | 0.0001 | 0.0836 |
353
- | 0.2250 | 400 | 0.0009 | 0.0848 |
354
- | 0.2812 | 500 | 0.0334 | 0.0874 |
355
- | 0.3375 | 600 | 0.0002 | 0.0848 |
356
- | 0.3937 | 700 | 0.0001 | 0.0774 |
357
- | 0.4499 | 800 | 0.0001 | 0.0712 |
358
- | 0.5062 | 900 | 0.0001 | 0.0792 |
359
- | 0.5624 | 1000 | 0.0001 | 0.0778 |
360
- | 0.6187 | 1100 | 0.0002 | 0.0787 |
361
- | **0.6749** | **1200** | **0.0001** | **0.0737** |
362
- | 0.7312 | 1300 | 0.0001 | 0.0788 |
363
- | 0.7874 | 1400 | 0.0001 | 0.0795 |
364
- | 0.8436 | 1500 | 0.0001 | 0.0729 |
365
- | 0.8999 | 1600 | 0.0001 | 0.0745 |
366
- | 0.9561 | 1700 | 0.0001 | 0.0771 |
367
- | 0.0006 | 1 | 0.0017 | - |
368
- | 0.0562 | 100 | 0.0002 | 0.0732 |
369
- | 0.1125 | 200 | 0.0001 | 0.0793 |
370
- | 0.1687 | 300 | 0.0001 | 0.0776 |
371
- | 0.2250 | 400 | 0.0002 | 0.0737 |
372
- | 0.2812 | 500 | 0.0001 | 0.0791 |
373
- | 0.3375 | 600 | 0.0001 | 0.0791 |
374
- | 0.3937 | 700 | 0.0 | 0.0797 |
375
- | 0.4499 | 800 | 0.0001 | 0.076 |
376
- | 0.5062 | 900 | 0.0001 | 0.077 |
377
- | 0.5624 | 1000 | 0.0 | 0.0802 |
378
- | 0.6187 | 1100 | 0.0 | 0.0815 |
379
- | **0.6749** | **1200** | **0.0001** | **0.0776** |
380
- | 0.7312 | 1300 | 0.0 | 0.0823 |
381
- | 0.7874 | 1400 | 0.0001 | 0.0804 |
382
- | 0.8436 | 1500 | 0.0 | 0.078 |
383
- | 0.8999 | 1600 | 0.0 | 0.0788 |
384
- | 0.9561 | 1700 | 0.0 | 0.079 |
385
- | 0.0003 | 1 | 0.0017 | - |
386
- | 0.0281 | 100 | 0.0002 | 0.0735 |
387
- | 0.0562 | 200 | 0.0001 | 0.0806 |
388
- | 0.0844 | 300 | 0.0001 | 0.0838 |
389
- | 0.1125 | 400 | 0.0003 | 0.0765 |
390
- | 0.1406 | 500 | 0.009 | 0.0841 |
391
- | 0.1687 | 600 | 0.0009 | 0.092 |
392
- | 0.1969 | 700 | 0.0003 | 0.0965 |
393
- | 0.2250 | 800 | 0.0005 | 0.0784 |
394
- | 0.2531 | 900 | 0.0001 | 0.0917 |
395
- | 0.2812 | 1000 | 0.0001 | 0.0924 |
396
- | 0.3093 | 1100 | 0.0001 | 0.0924 |
397
- | **0.3375** | **1200** | **0.0001** | **0.0888** |
398
- | 0.3656 | 1300 | 0.0001 | 0.0905 |
399
- | 0.3937 | 1400 | 0.0001 | 0.0874 |
400
- | 0.4218 | 1500 | 0.0001 | 0.0912 |
401
- | 0.4499 | 1600 | 0.0002 | 0.089 |
402
- | 0.4781 | 1700 | 0.0 | 0.0891 |
403
- | 0.5062 | 1800 | 0.0001 | 0.0885 |
404
- | 0.5343 | 1900 | 0.0 | 0.0898 |
405
- | 0.5624 | 2000 | 0.0001 | 0.0875 |
406
- | 0.5906 | 2100 | 0.0001 | 0.0906 |
407
- | 0.6187 | 2200 | 0.0 | 0.0911 |
408
- | 0.6468 | 2300 | 0.0001 | 0.0934 |
409
- | 0.6749 | 2400 | 0.0 | 0.0896 |
410
- | 0.7030 | 2500 | 0.0 | 0.0895 |
411
- | 0.7312 | 2600 | 0.0371 | 0.092 |
412
- | 0.7593 | 2700 | 0.0 | 0.0889 |
413
- | 0.7874 | 2800 | 0.0 | 0.0895 |
414
- | 0.8155 | 2900 | 0.0057 | 0.091 |
415
- | 0.8436 | 3000 | 0.0 | 0.0931 |
416
- | 0.8718 | 3100 | 0.0 | 0.0889 |
417
- | 0.8999 | 3200 | 0.0 | 0.0909 |
418
- | 0.9280 | 3300 | 0.0 | 0.0891 |
419
- | 0.9561 | 3400 | 0.0 | 0.0908 |
420
- | 0.9843 | 3500 | 0.0 | 0.0885 |
421
- | 0.0003 | 1 | 0.0018 | - |
422
- | 0.0281 | 100 | 0.0003 | 0.0758 |
423
- | 0.0562 | 200 | 0.0025 | 0.0739 |
424
- | 0.0844 | 300 | 0.0182 | 0.0954 |
425
- | 0.1125 | 400 | 0.0041 | 0.0794 |
426
- | 0.1406 | 500 | 0.0009 | 0.082 |
427
- | 0.1687 | 600 | 0.0005 | 0.0753 |
428
- | 0.1969 | 700 | 0.0001 | 0.0859 |
429
- | 0.2250 | 800 | 0.0001 | 0.0851 |
430
- | 0.2531 | 900 | 0.0001 | 0.0764 |
431
- | 0.2812 | 1000 | 0.0 | 0.0877 |
432
- | 0.3093 | 1100 | 0.0 | 0.081 |
433
- | **0.3375** | **1200** | **0.0001** | **0.0755** |
434
- | 0.3656 | 1300 | 0.0001 | 0.0818 |
435
- | 0.3937 | 1400 | 0.0001 | 0.0837 |
436
- | 0.4218 | 1500 | 0.0001 | 0.0838 |
437
- | 0.4499 | 1600 | 0.0 | 0.081 |
438
- | 0.4781 | 1700 | 0.0 | 0.0858 |
439
- | 0.5062 | 1800 | 0.0001 | 0.0858 |
440
- | 0.5343 | 1900 | 0.0003 | 0.0844 |
441
- | 0.5624 | 2000 | 0.0001 | 0.0864 |
442
- | 0.5906 | 2100 | 0.0 | 0.0842 |
443
- | 0.6187 | 2200 | 0.0001 | 0.0847 |
444
- | 0.6468 | 2300 | 0.0 | 0.0864 |
445
- | 0.6749 | 2400 | 0.0 | 0.0884 |
446
- | 0.7030 | 2500 | 0.0 | 0.0906 |
447
- | 0.7312 | 2600 | 0.0359 | 0.0863 |
448
- | 0.7593 | 2700 | 0.0 | 0.0839 |
449
- | 0.7874 | 2800 | 0.0001 | 0.0942 |
450
- | 0.8155 | 2900 | 0.0061 | 0.0944 |
451
- | 0.8436 | 3000 | 0.0 | 0.0954 |
452
- | 0.8718 | 3100 | 0.0 | 0.0888 |
453
- | 0.8999 | 3200 | 0.0 | 0.0915 |
454
- | 0.9280 | 3300 | 0.0 | 0.093 |
455
- | 0.9561 | 3400 | 0.0 | 0.0931 |
456
- | 0.9843 | 3500 | 0.0 | 0.0897 |
457
- | 0.0003 | 1 | 0.0016 | - |
458
- | 0.025 | 100 | 0.0023 | 0.0697 |
459
- | 0.05 | 200 | 0.0022 | 0.0732 |
460
- | 0.075 | 300 | 0.0007 | 0.0696 |
461
- | 0.1 | 400 | 0.0004 | 0.0699 |
462
- | 0.125 | 500 | 0.0026 | 0.07 |
463
- | 0.15 | 600 | 0.0552 | 0.0709 |
464
- | 0.175 | 700 | 0.0022 | 0.0691 |
465
- | 0.2 | 800 | 0.0005 | 0.0672 |
466
- | 0.225 | 900 | 0.0076 | 0.0677 |
467
- | 0.25 | 1000 | 0.0006 | 0.0689 |
468
- | 0.275 | 1100 | 0.0002 | 0.0708 |
469
- | **0.3** | **1200** | **0.0613** | **0.0659** |
470
- | 0.325 | 1300 | 0.0008 | 0.0683 |
471
- | 0.35 | 1400 | 0.063 | 0.0678 |
472
- | 0.375 | 1500 | 0.0562 | 0.071 |
473
- | 0.4 | 1600 | 0.0008 | 0.0684 |
474
- | 0.425 | 1700 | 0.0002 | 0.073 |
475
- | 0.45 | 1800 | 0.0004 | 0.0719 |
476
- | 0.475 | 1900 | 0.0003 | 0.0747 |
477
- | 0.5 | 2000 | 0.0002 | 0.0712 |
478
- | 0.525 | 2100 | 0.0001 | 0.0742 |
479
- | 0.55 | 2200 | 0.0001 | 0.0716 |
480
- | 0.575 | 2300 | 0.0019 | 0.0734 |
481
- | 0.6 | 2400 | 0.0003 | 0.0748 |
482
- | 0.625 | 2500 | 0.0543 | 0.0757 |
483
- | 0.65 | 2600 | 0.0009 | 0.0748 |
484
- | 0.675 | 2700 | 0.0001 | 0.0709 |
485
- | 0.7 | 2800 | 0.0002 | 0.0722 |
486
- | 0.725 | 2900 | 0.0005 | 0.0727 |
487
- | 0.75 | 3000 | 0.0002 | 0.0755 |
488
- | 0.775 | 3100 | 0.0002 | 0.0687 |
489
- | 0.8 | 3200 | 0.0022 | 0.0734 |
490
- | 0.825 | 3300 | 0.0002 | 0.07 |
491
- | 0.85 | 3400 | 0.0001 | 0.0737 |
492
- | 0.875 | 3500 | 0.0001 | 0.0694 |
493
- | 0.9 | 3600 | 0.0002 | 0.0732 |
494
- | 0.925 | 3700 | 0.0002 | 0.0701 |
495
- | 0.95 | 3800 | 0.0002 | 0.0714 |
496
- | 0.975 | 3900 | 0.0005 | 0.0676 |
497
- | 1.0 | 4000 | 0.0001 | 0.074 |
498
- | 1.025 | 4100 | 0.0036 | 0.0727 |
499
- | 1.05 | 4200 | 0.0001 | 0.0731 |
500
- | 1.075 | 4300 | 0.0001 | 0.0711 |
501
- | 1.1 | 4400 | 0.0394 | 0.076 |
502
- | 1.125 | 4500 | 0.0001 | 0.0746 |
503
- | 1.15 | 4600 | 0.0001 | 0.0715 |
504
- | 1.175 | 4700 | 0.0003 | 0.0723 |
505
- | 1.2 | 4800 | 0.0002 | 0.0743 |
506
- | 1.225 | 4900 | 0.0003 | 0.0758 |
507
- | 1.25 | 5000 | 0.0088 | 0.0705 |
508
- | 1.275 | 5100 | 0.0001 | 0.0748 |
509
- | 1.3 | 5200 | 0.0001 | 0.0735 |
510
- | 1.325 | 5300 | 0.0002 | 0.0747 |
511
- | 1.35 | 5400 | 0.0001 | 0.0706 |
512
- | 1.375 | 5500 | 0.0001 | 0.0757 |
513
- | 1.4 | 5600 | 0.0001 | 0.0739 |
514
- | 1.425 | 5700 | 0.0003 | 0.0752 |
515
- | 1.45 | 5800 | 0.0001 | 0.0713 |
516
- | 1.475 | 5900 | 0.0038 | 0.0774 |
517
- | 1.5 | 6000 | 0.0001 | 0.0748 |
518
- | 1.525 | 6100 | 0.0001 | 0.0736 |
519
- | 1.55 | 6200 | 0.0003 | 0.0721 |
520
- | 1.575 | 6300 | 0.0001 | 0.0764 |
521
- | 1.6 | 6400 | 0.0001 | 0.0754 |
522
- | 1.625 | 6500 | 0.0058 | 0.0717 |
523
- | 1.65 | 6600 | 0.0002 | 0.0724 |
524
- | 1.675 | 6700 | 0.0001 | 0.0745 |
525
- | 1.7 | 6800 | 0.003 | 0.0765 |
526
- | 1.725 | 6900 | 0.0001 | 0.0706 |
527
- | 1.75 | 7000 | 0.0 | 0.0747 |
528
- | 1.775 | 7100 | 0.0003 | 0.0745 |
529
- | 1.8 | 7200 | 0.0042 | 0.0758 |
530
- | 1.825 | 7300 | 0.0001 | 0.0717 |
531
- | 1.85 | 7400 | 0.0001 | 0.0771 |
532
- | 1.875 | 7500 | 0.0002 | 0.0742 |
533
- | 1.9 | 7600 | 0.0001 | 0.0751 |
534
- | 1.925 | 7700 | 0.0032 | 0.071 |
535
- | 1.95 | 7800 | 0.0001 | 0.0768 |
536
- | 1.975 | 7900 | 0.0001 | 0.0743 |
537
- | 2.0 | 8000 | 0.0001 | 0.0737 |
538
- | 2.025 | 8100 | 0.0002 | 0.0722 |
539
- | 2.05 | 8200 | 0.0001 | 0.0764 |
540
- | 2.075 | 8300 | 0.0 | 0.0759 |
541
- | 2.1 | 8400 | 0.0001 | 0.0723 |
542
- | 2.125 | 8500 | 0.0 | 0.0727 |
543
- | 2.15 | 8600 | 0.0029 | 0.0759 |
544
- | 2.175 | 8700 | 0.0 | 0.0786 |
545
- | 2.2 | 8800 | 0.0036 | 0.0724 |
546
- | 2.225 | 8900 | 0.0001 | 0.077 |
547
- | 2.25 | 9000 | 0.0001 | 0.0755 |
548
- | 2.275 | 9100 | 0.0001 | 0.0764 |
549
- | 2.3 | 9200 | 0.0 | 0.0717 |
550
- | 2.325 | 9300 | 0.0001 | 0.0765 |
551
- | 2.35 | 9400 | 0.0 | 0.074 |
552
- | 2.375 | 9500 | 0.0024 | 0.0753 |
553
- | 2.4 | 9600 | 0.0 | 0.0715 |
554
- | 2.425 | 9700 | 0.0 | 0.0771 |
555
- | 2.45 | 9800 | 0.0001 | 0.0746 |
556
- | 2.475 | 9900 | 0.0001 | 0.0734 |
557
- | 2.5 | 10000 | 0.0001 | 0.0721 |
558
- | 2.525 | 10100 | 0.0001 | 0.0768 |
559
- | 2.55 | 10200 | 0.0001 | 0.0774 |
560
- | 2.575 | 10300 | 0.0 | 0.0736 |
561
- | 2.6 | 10400 | 0.0029 | 0.0746 |
562
- | 2.625 | 10500 | 0.0001 | 0.0769 |
563
- | 2.65 | 10600 | 0.0001 | 0.0787 |
564
- | 2.675 | 10700 | 0.0001 | 0.0718 |
565
- | 2.7 | 10800 | 0.0001 | 0.0758 |
566
- | 2.725 | 10900 | 0.0001 | 0.0749 |
567
- | 2.75 | 11000 | 0.0 | 0.0763 |
568
- | 2.775 | 11100 | 0.0001 | 0.0722 |
569
- | 2.8 | 11200 | 0.0 | 0.0773 |
570
- | 2.825 | 11300 | 0.0024 | 0.0746 |
571
- | 2.85 | 11400 | 0.0 | 0.0756 |
572
- | 2.875 | 11500 | 0.0 | 0.0718 |
573
- | 2.9 | 11600 | 0.0001 | 0.0773 |
574
- | 2.925 | 11700 | 0.0001 | 0.0761 |
575
- | 2.95 | 11800 | 0.0001 | 0.0752 |
576
- | 2.975 | 11900 | 0.0 | 0.074 |
577
- | 3.0 | 12000 | 0.0401 | 0.0779 |
578
- | 3.025 | 12100 | 0.0 | 0.0782 |
579
- | 3.05 | 12200 | 0.0025 | 0.0738 |
580
- | 3.075 | 12300 | 0.0001 | 0.0743 |
581
- | 3.1 | 12400 | 0.0 | 0.076 |
582
- | 3.125 | 12500 | 0.0001 | 0.078 |
583
- | 3.15 | 12600 | 0.0048 | 0.0716 |
584
- | 3.175 | 12700 | 0.0001 | 0.076 |
585
- | 3.2 | 12800 | 0.0 | 0.0745 |
586
- | 3.225 | 12900 | 0.0001 | 0.0758 |
587
- | 3.25 | 13000 | 0.0 | 0.0715 |
588
- | 3.275 | 13100 | 0.0024 | 0.0764 |
589
- | 3.3 | 13200 | 0.0001 | 0.0747 |
590
- | 3.325 | 13300 | 0.0 | 0.0767 |
591
- | 3.35 | 13400 | 0.0001 | 0.0729 |
592
- | 3.375 | 13500 | 0.0 | 0.0782 |
593
- | 3.4 | 13600 | 0.0 | 0.076 |
594
- | 3.425 | 13700 | 0.0 | 0.075 |
595
- | 3.45 | 13800 | 0.0001 | 0.0734 |
596
- | 3.475 | 13900 | 0.0 | 0.077 |
597
- | 3.5 | 14000 | 0.0026 | 0.0768 |
598
- | 3.525 | 14100 | 0.0047 | 0.0729 |
599
- | 3.55 | 14200 | 0.0 | 0.074 |
600
- | 3.575 | 14300 | 0.0001 | 0.0759 |
601
- | 3.6 | 14400 | 0.0 | 0.078 |
602
- | 3.625 | 14500 | 0.0001 | 0.0716 |
603
- | 3.65 | 14600 | 0.0 | 0.0757 |
604
- | 3.675 | 14700 | 0.0001 | 0.075 |
605
- | 3.7 | 14800 | 0.0045 | 0.0769 |
606
- | 3.725 | 14900 | 0.003 | 0.0728 |
607
- | 3.75 | 15000 | 0.0 | 0.0779 |
608
- | 3.775 | 15100 | 0.0 | 0.0751 |
609
- | 3.8 | 15200 | 0.0001 | 0.0765 |
610
- | 3.825 | 15300 | 0.0001 | 0.0722 |
611
- | 3.85 | 15400 | 0.0 | 0.0778 |
612
- | 3.875 | 15500 | 0.0001 | 0.0753 |
613
- | 3.9 | 15600 | 0.0001 | 0.0746 |
614
- | 3.925 | 15700 | 0.0 | 0.0734 |
615
- | 3.95 | 15800 | 0.0026 | 0.0772 |
616
- | 3.975 | 15900 | 0.0 | 0.077 |
617
- | 4.0 | 16000 | 0.0 | 0.0732 |
618
- | 4.025 | 16100 | 0.0 | 0.0739 |
619
- | 4.05 | 16200 | 0.0 | 0.076 |
620
- | 4.075 | 16300 | 0.0001 | 0.0787 |
621
- | 4.1 | 16400 | 0.0047 | 0.0721 |
622
- | 4.125 | 16500 | 0.0001 | 0.0765 |
623
- | 4.15 | 16600 | 0.0 | 0.0754 |
624
- | 4.175 | 16700 | 0.0031 | 0.0769 |
625
- | 4.2 | 16800 | 0.0001 | 0.0725 |
626
- | 4.225 | 16900 | 0.0 | 0.0776 |
627
- | 4.25 | 17000 | 0.0 | 0.0748 |
628
- | 4.275 | 17100 | 0.0001 | 0.0763 |
629
- | 4.3 | 17200 | 0.0 | 0.0722 |
630
- | 4.325 | 17300 | 0.0 | 0.0779 |
631
- | 4.35 | 17400 | 0.0 | 0.0756 |
632
- | 4.375 | 17500 | 0.0 | 0.0746 |
633
- | 4.4 | 17600 | 0.0026 | 0.0733 |
634
- | 4.425 | 17700 | 0.0001 | 0.0771 |
635
- | 4.45 | 17800 | 0.0 | 0.0773 |
636
- | 4.475 | 17900 | 0.0 | 0.0732 |
637
- | 4.5 | 18000 | 0.0001 | 0.0742 |
638
- | 4.525 | 18100 | 0.0 | 0.0763 |
639
- | 4.55 | 18200 | 0.0001 | 0.0786 |
640
- | 4.575 | 18300 | 0.0001 | 0.0719 |
641
- | 4.6 | 18400 | 0.0 | 0.0763 |
642
- | 4.625 | 18500 | 0.0029 | 0.0751 |
643
- | 4.65 | 18600 | 0.0 | 0.0766 |
644
- | 4.675 | 18700 | 0.0 | 0.0723 |
645
- | 4.7 | 18800 | 0.0 | 0.0774 |
646
- | 4.725 | 18900 | 0.0001 | 0.0746 |
647
- | 4.75 | 19000 | 0.0 | 0.076 |
648
- | 4.775 | 19100 | 0.0 | 0.0719 |
649
- | 4.8 | 19200 | 0.0001 | 0.0775 |
650
- | 4.825 | 19300 | 0.0001 | 0.0753 |
651
- | 4.85 | 19400 | 0.0026 | 0.0747 |
652
- | 4.875 | 19500 | 0.0 | 0.0734 |
653
- | 4.9 | 19600 | 0.0421 | 0.0772 |
654
- | 4.925 | 19700 | 0.0001 | 0.0772 |
655
- | 4.95 | 19800 | 0.0 | 0.0731 |
656
- | 4.975 | 19900 | 0.0001 | 0.0741 |
657
- | 5.0 | 20000 | 0.0 | 0.0761 |
658
 
659
  * The bold row denotes the saved checkpoint.
660
  ### Framework Versions
 
1
  ---
 
2
  library_name: setfit
3
  metrics:
4
  - accuracy
 
27
  correspondiente.
28
  inference: true
29
  model-index:
30
+ - name: SetFit
31
  results:
32
  - task:
33
  type: text-classification
 
38
  split: test
39
  metrics:
40
  - type: accuracy
41
+ value: 0.8
42
  name: Accuracy
43
  ---
44
 
45
+ # SetFit
46
 
47
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
48
 
49
  The model has been trained using an efficient few-shot learning technique that involves:
50
 
 
55
 
56
  ### Model Description
57
  - **Model Type:** SetFit
58
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
59
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
60
  - **Maximum Sequence Length:** 512 tokens
61
  - **Number of Classes:** 20 classes
 
98
  ### Metrics
99
  | Label | Accuracy |
100
  |:--------|:---------|
101
+ | **all** | 0.8 |
102
 
103
  ## Uses
104
 
 
177
 
178
  ### Training Hyperparameters
179
  - batch_size: (16, 16)
180
+ - num_epochs: (10, 10)
181
  - max_steps: -1
182
  - sampling_strategy: oversampling
 
183
  - body_learning_rate: (1e-06, 1e-06)
184
+ - head_learning_rate: 0.003
185
  - loss: CosineSimilarityLoss
186
  - distance_metric: cosine_distance
187
  - margin: 0.25
188
  - end_to_end: True
189
  - use_amp: True
190
  - warmup_proportion: 0.1
191
+ - l2_weight: 0.001
192
  - seed: 42
193
  - eval_max_steps: 100
194
  - load_best_model_at_end: True
195
 
196
  ### Training Results
197
+ | Epoch | Step | Training Loss | Validation Loss |
198
+ |:----------:|:-------:|:-------------:|:---------------:|
199
+ | 0.0007 | 1 | 0.0031 | - |
200
+ | **0.0658** | **100** | **0.0003** | **0.067** |
201
+ | 0.1316 | 200 | 0.0001 | 0.0717 |
202
+ | 0.1974 | 300 | 0.0001 | 0.0711 |
203
+ | 0.2632 | 400 | 0.0003 | 0.0721 |
204
+ | 0.3289 | 500 | 0.0021 | 0.0667 |
205
+ | 0.3947 | 600 | 0.0001 | 0.0611 |
206
+ | 0.4605 | 700 | 0.0002 | 0.0672 |
207
+ | 0.5263 | 800 | 0.0001 | 0.0777 |
208
+ | 0.5921 | 900 | 0.0001 | 0.067 |
209
+ | 0.6579 | 1000 | 0.0001 | 0.0687 |
210
+ | 0.7237 | 1100 | 0.0 | 0.0661 |
211
+ | 0.7895 | 1200 | 0.005 | 0.0695 |
212
+ | 0.8553 | 1300 | 0.0004 | 0.0661 |
213
+ | 0.9211 | 1400 | 0.0019 | 0.0667 |
214
+ | 0.9868 | 1500 | 0.0001 | 0.0672 |
215
+ | 1.0526 | 1600 | 0.0001 | 0.0714 |
216
+ | 1.1184 | 1700 | 0.0001 | 0.0687 |
217
+ | 1.1842 | 1800 | 0.0001 | 0.0723 |
218
+ | 1.25 | 1900 | 0.0 | 0.0722 |
219
+ | 1.3158 | 2000 | 0.0001 | 0.0728 |
220
+ | 1.3816 | 2100 | 0.0 | 0.0713 |
221
+ | 1.4474 | 2200 | 0.0 | 0.0733 |
222
+ | 1.5132 | 2300 | 0.0025 | 0.0719 |
223
+ | 1.5789 | 2400 | 0.0 | 0.0708 |
224
+ | 1.6447 | 2500 | 0.0 | 0.0722 |
225
+ | 1.7105 | 2600 | 0.0 | 0.0723 |
226
+ | 1.7763 | 2700 | 0.0 | 0.069 |
227
+ | 1.8421 | 2800 | 0.0 | 0.0703 |
228
+ | 1.9079 | 2900 | 0.0 | 0.0722 |
229
+ | 1.9737 | 3000 | 0.0001 | 0.0701 |
230
+ | 2.0395 | 3100 | 0.0 | 0.0691 |
231
+ | 2.1053 | 3200 | 0.0024 | 0.0706 |
232
+ | 2.1711 | 3300 | 0.0001 | 0.0716 |
233
+ | 2.2368 | 3400 | 0.0001 | 0.0886 |
234
+ | 2.3026 | 3500 | 0.0011 | 0.0734 |
235
+ | 2.3684 | 3600 | 0.0001 | 0.0875 |
236
+ | 2.4342 | 3700 | 0.0001 | 0.0809 |
237
+ | 2.5 | 3800 | 0.0 | 0.0818 |
238
+ | 2.5658 | 3900 | 0.0001 | 0.0829 |
239
+ | 2.6316 | 4000 | 0.0 | 0.0833 |
240
+ | 2.6974 | 4100 | 0.0036 | 0.0841 |
241
+ | 2.7632 | 4200 | 0.0 | 0.0833 |
242
+ | 2.8289 | 4300 | 0.0 | 0.0831 |
243
+ | 2.8947 | 4400 | 0.0374 | 0.083 |
244
+ | 2.9605 | 4500 | 0.0 | 0.083 |
245
+ | 3.0263 | 4600 | 0.0001 | 0.0831 |
246
+ | 3.0921 | 4700 | 0.0 | 0.0829 |
247
+ | 3.1579 | 4800 | 0.0 | 0.0828 |
248
+ | 3.2237 | 4900 | 0.0 | 0.0828 |
249
+ | 3.2895 | 5000 | 0.0068 | 0.0829 |
250
+ | 3.3553 | 5100 | 0.0 | 0.0826 |
251
+ | 3.4211 | 5200 | 0.0 | 0.0827 |
252
+ | 3.4868 | 5300 | 0.0 | 0.0824 |
253
+ | 3.5526 | 5400 | 0.0 | 0.0823 |
254
+ | 3.6184 | 5500 | 0.0 | 0.0822 |
255
+ | 3.6842 | 5600 | 0.0 | 0.0821 |
256
+ | 3.75 | 5700 | 0.0 | 0.0822 |
257
+ | 3.8158 | 5800 | 0.0 | 0.082 |
258
+ | 3.8816 | 5900 | 0.0032 | 0.0819 |
259
+ | 3.9474 | 6000 | 0.0 | 0.0822 |
260
+ | 4.0132 | 6100 | 0.0 | 0.0824 |
261
+ | 4.0789 | 6200 | 0.0 | 0.0822 |
262
+ | 4.1447 | 6300 | 0.0 | 0.0819 |
263
+ | 4.2105 | 6400 | 0.0 | 0.0822 |
264
+ | 4.2763 | 6500 | 0.0057 | 0.0824 |
265
+ | 4.3421 | 6600 | 0.0 | 0.0824 |
266
+ | 4.4079 | 6700 | 0.0 | 0.0824 |
267
+ | 4.4737 | 6800 | 0.0022 | 0.0822 |
268
+ | 4.5395 | 6900 | 0.0 | 0.0822 |
269
+ | 4.6053 | 7000 | 0.0 | 0.0823 |
270
+ | 4.6711 | 7100 | 0.0 | 0.0822 |
271
+ | 4.7368 | 7200 | 0.0034 | 0.0822 |
272
+ | 4.8026 | 7300 | 0.0 | 0.0822 |
273
+ | 4.8684 | 7400 | 0.0 | 0.0822 |
274
+ | 4.9342 | 7500 | 0.0 | 0.0822 |
275
+ | 5.0 | 7600 | 0.0 | 0.0822 |
276
+ | 0.0007 | 1 | 0.0018 | - |
277
+ | **0.0658** | **100** | **0.0002** | **0.0612** |
278
+ | 0.1316 | 200 | 0.0002 | 0.0613 |
279
+ | 0.1974 | 300 | 0.0002 | 0.0615 |
280
+ | 0.2632 | 400 | 0.0 | 0.0619 |
281
+ | 0.3289 | 500 | 0.0021 | 0.0626 |
282
+ | 0.3947 | 600 | 0.0001 | 0.0628 |
283
+ | 0.4605 | 700 | 0.0001 | 0.0633 |
284
+ | 0.5263 | 800 | 0.0001 | 0.064 |
285
+ | 0.5921 | 900 | 0.0001 | 0.0635 |
286
+ | 0.6579 | 1000 | 0.0001 | 0.0645 |
287
+ | 0.7237 | 1100 | 0.0001 | 0.0659 |
288
+ | 0.7895 | 1200 | 0.0055 | 0.0662 |
289
+ | 0.8553 | 1300 | 0.0001 | 0.0667 |
290
+ | 0.9211 | 1400 | 0.0032 | 0.0673 |
291
+ | 0.9868 | 1500 | 0.0001 | 0.067 |
292
+ | 1.0526 | 1600 | 0.0001 | 0.0668 |
293
+ | 1.1184 | 1700 | 0.0001 | 0.0667 |
294
+ | 1.1842 | 1800 | 0.0001 | 0.0664 |
295
+ | 1.25 | 1900 | 0.0001 | 0.0667 |
296
+ | 1.3158 | 2000 | 0.0 | 0.0674 |
297
+ | 1.3816 | 2100 | 0.0001 | 0.0667 |
298
+ | 1.4474 | 2200 | 0.0 | 0.0669 |
299
+ | 1.5132 | 2300 | 0.0028 | 0.0669 |
300
+ | 1.5789 | 2400 | 0.0001 | 0.0671 |
301
+ | 1.6447 | 2500 | 0.0001 | 0.0676 |
302
+ | 1.7105 | 2600 | 0.0001 | 0.0689 |
303
+ | 1.7763 | 2700 | 0.0001 | 0.069 |
304
+ | 1.8421 | 2800 | 0.0001 | 0.0691 |
305
+ | 1.9079 | 2900 | 0.0001 | 0.0696 |
306
+ | 1.9737 | 3000 | 0.0001 | 0.0688 |
307
+ | 2.0395 | 3100 | 0.0 | 0.0678 |
308
+ | 2.1053 | 3200 | 0.0027 | 0.0677 |
309
+ | 2.1711 | 3300 | 0.0001 | 0.0675 |
310
+ | 2.2368 | 3400 | 0.0 | 0.0676 |
311
+ | 2.3026 | 3500 | 0.0001 | 0.068 |
312
+ | 2.3684 | 3600 | 0.0001 | 0.0672 |
313
+ | 2.4342 | 3700 | 0.0 | 0.0669 |
314
+ | 2.5 | 3800 | 0.0 | 0.0667 |
315
+ | 2.5658 | 3900 | 0.0 | 0.0673 |
316
+ | 2.6316 | 4000 | 0.0 | 0.0672 |
317
+ | 2.6974 | 4100 | 0.0032 | 0.0689 |
318
+ | 2.7632 | 4200 | 0.0 | 0.0691 |
319
+ | 2.8289 | 4300 | 0.0001 | 0.0693 |
320
+ | 2.8947 | 4400 | 0.0388 | 0.0692 |
321
+ | 2.9605 | 4500 | 0.0001 | 0.0691 |
322
+ | 3.0263 | 4600 | 0.0 | 0.0683 |
323
+ | 3.0921 | 4700 | 0.0 | 0.0685 |
324
+ | 3.1579 | 4800 | 0.0001 | 0.0681 |
325
+ | 3.2237 | 4900 | 0.0 | 0.0677 |
326
+ | 3.2895 | 5000 | 0.0081 | 0.0684 |
327
+ | 3.3553 | 5100 | 0.0 | 0.0685 |
328
+ | 3.4211 | 5200 | 0.0 | 0.0681 |
329
+ | 3.4868 | 5300 | 0.0001 | 0.0683 |
330
+ | 3.5526 | 5400 | 0.0001 | 0.0681 |
331
+ | 3.6184 | 5500 | 0.0 | 0.0675 |
332
+ | 3.6842 | 5600 | 0.0 | 0.0687 |
333
+ | 3.75 | 5700 | 0.0001 | 0.0692 |
334
+ | 3.8158 | 5800 | 0.0 | 0.0695 |
335
+ | 3.8816 | 5900 | 0.0038 | 0.069 |
336
+ | 3.9474 | 6000 | 0.0001 | 0.069 |
337
+ | 4.0132 | 6100 | 0.0 | 0.0684 |
338
+ | 4.0789 | 6200 | 0.0001 | 0.0688 |
339
+ | 4.1447 | 6300 | 0.0 | 0.0682 |
340
+ | 4.2105 | 6400 | 0.0 | 0.0677 |
341
+ | 4.2763 | 6500 | 0.0049 | 0.0678 |
342
+ | 4.3421 | 6600 | 0.0001 | 0.068 |
343
+ | 4.4079 | 6700 | 0.0 | 0.0679 |
344
+ | 4.4737 | 6800 | 0.0029 | 0.0679 |
345
+ | 4.5395 | 6900 | 0.0 | 0.0684 |
346
+ | 4.6053 | 7000 | 0.0 | 0.0678 |
347
+ | 4.6711 | 7100 | 0.0 | 0.0688 |
348
+ | 4.7368 | 7200 | 0.004 | 0.0695 |
349
+ | 4.8026 | 7300 | 0.0 | 0.0696 |
350
+ | 4.8684 | 7400 | 0.0 | 0.0695 |
351
+ | 4.9342 | 7500 | 0.0 | 0.0695 |
352
+ | 5.0 | 7600 | 0.0 | 0.0691 |
353
+ | 5.0658 | 7700 | 0.0033 | 0.0691 |
354
+ | 5.1316 | 7800 | 0.0 | 0.0691 |
355
+ | 5.1974 | 7900 | 0.0 | 0.0688 |
356
+ | 5.2632 | 8000 | 0.0 | 0.0689 |
357
+ | 5.3289 | 8100 | 0.0001 | 0.0689 |
358
+ | 5.3947 | 8200 | 0.0 | 0.0688 |
359
+ | 5.4605 | 8300 | 0.0 | 0.0685 |
360
+ | 5.5263 | 8400 | 0.0 | 0.0688 |
361
+ | 5.5921 | 8500 | 0.0 | 0.0683 |
362
+ | 5.6579 | 8600 | 0.003 | 0.0688 |
363
+ | 5.7237 | 8700 | 0.0 | 0.0698 |
364
+ | 5.7895 | 8800 | 0.0037 | 0.0701 |
365
+ | 5.8553 | 8900 | 0.0 | 0.0701 |
366
+ | 5.9211 | 9000 | 0.0001 | 0.0695 |
367
+ | 5.9868 | 9100 | 0.0001 | 0.0697 |
368
+ | 6.0526 | 9200 | 0.0 | 0.0694 |
369
+ | 6.1184 | 9300 | 0.0 | 0.0689 |
370
+ | 6.1842 | 9400 | 0.0 | 0.0686 |
371
+ | 6.25 | 9500 | 0.0025 | 0.0686 |
372
+ | 6.3158 | 9600 | 0.0 | 0.069 |
373
+ | 6.3816 | 9700 | 0.0 | 0.069 |
374
+ | 6.4474 | 9800 | 0.0 | 0.0687 |
375
+ | 6.5132 | 9900 | 0.0001 | 0.0683 |
376
+ | 6.5789 | 10000 | 0.0 | 0.0684 |
377
+ | 6.6447 | 10100 | 0.0 | 0.0684 |
378
+ | 6.7105 | 10200 | 0.0001 | 0.069 |
379
+ | 6.7763 | 10300 | 0.0 | 0.0694 |
380
+ | 6.8421 | 10400 | 0.0028 | 0.0696 |
381
+ | 6.9079 | 10500 | 0.0 | 0.0697 |
382
+ | 6.9737 | 10600 | 0.0 | 0.0697 |
383
+ | 7.0395 | 10700 | 0.0 | 0.0694 |
384
+ | 7.1053 | 10800 | 0.0 | 0.0692 |
385
+ | 7.1711 | 10900 | 0.0 | 0.069 |
386
+ | 7.2368 | 11000 | 0.0 | 0.0691 |
387
+ | 7.3026 | 11100 | 0.0 | 0.0691 |
388
+ | 7.3684 | 11200 | 0.0 | 0.0691 |
389
+ | 7.4342 | 11300 | 0.0025 | 0.069 |
390
+ | 7.5 | 11400 | 0.0 | 0.0687 |
391
+ | 7.5658 | 11500 | 0.0 | 0.0688 |
392
+ | 7.6316 | 11600 | 0.0 | 0.0688 |
393
+ | 7.6974 | 11700 | 0.0001 | 0.0691 |
394
+ | 7.7632 | 11800 | 0.0 | 0.0692 |
395
+ | 7.8289 | 11900 | 0.0001 | 0.0692 |
396
+ | 7.8947 | 12000 | 0.0405 | 0.0693 |
397
+ | 7.9605 | 12100 | 0.0 | 0.0695 |
398
+ | 8.0263 | 12200 | 0.0029 | 0.0694 |
399
+ | 8.0921 | 12300 | 0.0001 | 0.0693 |
400
+ | 8.1579 | 12400 | 0.0 | 0.0692 |
401
+ | 8.2237 | 12500 | 0.0001 | 0.0691 |
402
+ | 8.2895 | 12600 | 0.0045 | 0.0693 |
403
+ | 8.3553 | 12700 | 0.0 | 0.0693 |
404
+ | 8.4211 | 12800 | 0.0 | 0.0692 |
405
+ | 8.4868 | 12900 | 0.0 | 0.0691 |
406
+ | 8.5526 | 13000 | 0.0 | 0.0691 |
407
+ | 8.6184 | 13100 | 0.0026 | 0.069 |
408
+ | 8.6842 | 13200 | 0.0 | 0.0692 |
409
+ | 8.75 | 13300 | 0.0 | 0.0694 |
410
+ | 8.8158 | 13400 | 0.0 | 0.0694 |
411
+ | 8.8816 | 13500 | 0.0 | 0.0693 |
412
+ | 8.9474 | 13600 | 0.0 | 0.0694 |
413
+ | 9.0132 | 13700 | 0.0 | 0.0693 |
414
+ | 9.0789 | 13800 | 0.0 | 0.0693 |
415
+ | 9.1447 | 13900 | 0.0 | 0.0692 |
416
+ | 9.2105 | 14000 | 0.003 | 0.0692 |
417
+ | 9.2763 | 14100 | 0.0044 | 0.0692 |
418
+ | 9.3421 | 14200 | 0.0 | 0.0692 |
419
+ | 9.4079 | 14300 | 0.0 | 0.0692 |
420
+ | 9.4737 | 14400 | 0.0 | 0.0691 |
421
+ | 9.5395 | 14500 | 0.0 | 0.0691 |
422
+ | 9.6053 | 14600 | 0.0 | 0.0691 |
423
+ | 9.6711 | 14700 | 0.0 | 0.0691 |
424
+ | 9.7368 | 14800 | 0.0043 | 0.0692 |
425
+ | 9.8026 | 14900 | 0.0028 | 0.0692 |
426
+ | 9.8684 | 15000 | 0.0 | 0.0692 |
427
+ | 9.9342 | 15100 | 0.0 | 0.0692 |
428
+ | 10.0 | 15200 | 0.0 | 0.0692 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
429
 
430
  * The bold row denotes the saved checkpoint.
431
  ### Framework Versions
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "results/step_1200",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "results/step_100",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
config_setfit.json CHANGED
@@ -1,4 +1,4 @@
1
  {
2
- "normalize_embeddings": false,
3
- "labels": null
4
  }
 
1
  {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7c2faf2ab0cfe7531e5404e094849122fb11ad5565dca2521d3d7898dbcc4b33
3
  size 737406824
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53c262c6065a8f80f17c0a55b60b32037fc341ee214e1db3802f5aad4d696f6e
3
  size 737406824
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dd687c772488b694cfc2e2c04c8ab7554a052e6077f8cdf697cd6fa2f58402ec
3
  size 124039
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1217582c47bee2a4b06d815b1f5c0cf2d5c49cec8094f1a5801de7d638548e7b
3
  size 124039