End of training
Browse files
README.md
CHANGED
|
@@ -12,18 +12,18 @@ model-index:
|
|
| 12 |
- name: wav2vec2-large-xlsr-53-sw-tokenizer
|
| 13 |
results:
|
| 14 |
- task:
|
| 15 |
-
type: automatic-speech-recognition
|
| 16 |
name: Automatic Speech Recognition
|
|
|
|
| 17 |
dataset:
|
| 18 |
name: common_voice_17_0
|
| 19 |
type: common_voice_17_0
|
| 20 |
config: sw
|
| 21 |
-
split:
|
| 22 |
args: sw
|
| 23 |
metrics:
|
| 24 |
-
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
---
|
| 28 |
|
| 29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 33 |
|
| 34 |
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_17_0 dataset.
|
| 35 |
It achieves the following results on the evaluation set:
|
| 36 |
-
- Loss: 0.
|
| 37 |
-
- Wer: 0.
|
| 38 |
|
| 39 |
## Model description
|
| 40 |
|
|
@@ -57,26 +57,79 @@ The following hyperparameters were used during training:
|
|
| 57 |
- train_batch_size: 8
|
| 58 |
- eval_batch_size: 8
|
| 59 |
- seed: 42
|
| 60 |
-
- optimizer: Use OptimizerNames.
|
| 61 |
- lr_scheduler_type: linear
|
| 62 |
- lr_scheduler_warmup_steps: 1000
|
| 63 |
-
- num_epochs:
|
| 64 |
- mixed_precision_training: Native AMP
|
| 65 |
|
| 66 |
### Training results
|
| 67 |
|
| 68 |
-
| Training Loss | Epoch | Step
|
| 69 |
-
|
| 70 |
-
| No log | 0.1721 | 1000
|
| 71 |
-
| No log | 0.3441 | 2000
|
| 72 |
-
| 2.
|
| 73 |
-
| 2.
|
| 74 |
-
| 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
|
| 77 |
### Framework versions
|
| 78 |
|
| 79 |
-
- Transformers 4.
|
| 80 |
-
- Pytorch 2.
|
| 81 |
- Datasets 3.6.0
|
| 82 |
-
- Tokenizers 0.21.
|
|
|
|
| 12 |
- name: wav2vec2-large-xlsr-53-sw-tokenizer
|
| 13 |
results:
|
| 14 |
- task:
|
|
|
|
| 15 |
name: Automatic Speech Recognition
|
| 16 |
+
type: automatic-speech-recognition
|
| 17 |
dataset:
|
| 18 |
name: common_voice_17_0
|
| 19 |
type: common_voice_17_0
|
| 20 |
config: sw
|
| 21 |
+
split: test
|
| 22 |
args: sw
|
| 23 |
metrics:
|
| 24 |
+
- name: Wer
|
| 25 |
+
type: wer
|
| 26 |
+
value: 0.3240375929734197
|
| 27 |
---
|
| 28 |
|
| 29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
|
| 33 |
|
| 34 |
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_17_0 dataset.
|
| 35 |
It achieves the following results on the evaluation set:
|
| 36 |
+
- Loss: 0.4306
|
| 37 |
+
- Wer: 0.3240
|
| 38 |
|
| 39 |
## Model description
|
| 40 |
|
|
|
|
| 57 |
- train_batch_size: 8
|
| 58 |
- eval_batch_size: 8
|
| 59 |
- seed: 42
|
| 60 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 61 |
- lr_scheduler_type: linear
|
| 62 |
- lr_scheduler_warmup_steps: 1000
|
| 63 |
+
- num_epochs: 10
|
| 64 |
- mixed_precision_training: Native AMP
|
| 65 |
|
| 66 |
### Training results
|
| 67 |
|
| 68 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
| 69 |
+
|:-------------:|:------:|:-----:|:---------------:|:------:|
|
| 70 |
+
| No log | 0.1721 | 1000 | 0.7966 | 0.7685 |
|
| 71 |
+
| No log | 0.3441 | 2000 | 0.5178 | 0.5562 |
|
| 72 |
+
| 2.0511 | 0.5162 | 3000 | 0.4524 | 0.5039 |
|
| 73 |
+
| 2.0511 | 0.6882 | 4000 | 0.4207 | 0.4615 |
|
| 74 |
+
| 2.0511 | 0.8603 | 5000 | 0.4031 | 0.4437 |
|
| 75 |
+
| 0.2699 | 1.0323 | 6000 | 0.3875 | 0.4224 |
|
| 76 |
+
| 0.2699 | 1.2044 | 7000 | 0.3870 | 0.4141 |
|
| 77 |
+
| 0.2699 | 1.3765 | 8000 | 0.3811 | 0.4143 |
|
| 78 |
+
| 0.1994 | 1.5485 | 9000 | 0.3689 | 0.4026 |
|
| 79 |
+
| 0.1994 | 1.7206 | 10000 | 0.3603 | 0.3915 |
|
| 80 |
+
| 0.1994 | 1.8926 | 11000 | 0.3561 | 0.3862 |
|
| 81 |
+
| 0.1838 | 2.0647 | 12000 | 0.3502 | 0.3809 |
|
| 82 |
+
| 0.1838 | 2.2368 | 13000 | 0.3580 | 0.3763 |
|
| 83 |
+
| 0.1838 | 2.4088 | 14000 | 0.3445 | 0.3747 |
|
| 84 |
+
| 0.1472 | 2.5809 | 15000 | 0.3416 | 0.3720 |
|
| 85 |
+
| 0.1472 | 2.7529 | 16000 | 0.3599 | 0.3709 |
|
| 86 |
+
| 0.1472 | 2.9250 | 17000 | 0.3503 | 0.3666 |
|
| 87 |
+
| 0.1405 | 3.0970 | 18000 | 0.3549 | 0.3624 |
|
| 88 |
+
| 0.1405 | 3.2691 | 19000 | 0.3476 | 0.3582 |
|
| 89 |
+
| 0.1405 | 3.4412 | 20000 | 0.3359 | 0.3574 |
|
| 90 |
+
| 0.116 | 3.6132 | 21000 | 0.3487 | 0.3600 |
|
| 91 |
+
| 0.116 | 3.7853 | 22000 | 0.3439 | 0.3552 |
|
| 92 |
+
| 0.116 | 3.9573 | 23000 | 0.3502 | 0.3579 |
|
| 93 |
+
| 0.1103 | 4.1294 | 24000 | 0.3436 | 0.3513 |
|
| 94 |
+
| 0.1103 | 4.3014 | 25000 | 0.3502 | 0.3502 |
|
| 95 |
+
| 0.1103 | 4.4735 | 26000 | 0.3381 | 0.3534 |
|
| 96 |
+
| 0.0957 | 4.6456 | 27000 | 0.3411 | 0.3482 |
|
| 97 |
+
| 0.0957 | 4.8176 | 28000 | 0.3425 | 0.3456 |
|
| 98 |
+
| 0.0957 | 4.9897 | 29000 | 0.3331 | 0.3425 |
|
| 99 |
+
| 0.0883 | 5.1617 | 30000 | 0.3620 | 0.3449 |
|
| 100 |
+
| 0.0883 | 5.3338 | 31000 | 0.3403 | 0.3430 |
|
| 101 |
+
| 0.0883 | 5.5058 | 32000 | 0.3590 | 0.3429 |
|
| 102 |
+
| 0.0757 | 5.6779 | 33000 | 0.3474 | 0.3402 |
|
| 103 |
+
| 0.0757 | 5.8500 | 34000 | 0.3395 | 0.3378 |
|
| 104 |
+
| 0.0757 | 6.0220 | 35000 | 0.3565 | 0.3395 |
|
| 105 |
+
| 0.0695 | 6.1941 | 36000 | 0.3729 | 0.3397 |
|
| 106 |
+
| 0.0695 | 6.3661 | 37000 | 0.3676 | 0.3368 |
|
| 107 |
+
| 0.0695 | 6.5382 | 38000 | 0.3748 | 0.3364 |
|
| 108 |
+
| 0.0601 | 6.7103 | 39000 | 0.3783 | 0.3360 |
|
| 109 |
+
| 0.0601 | 6.8823 | 40000 | 0.3657 | 0.3363 |
|
| 110 |
+
| 0.0601 | 7.0544 | 41000 | 0.3808 | 0.3343 |
|
| 111 |
+
| 0.0542 | 7.2264 | 42000 | 0.3934 | 0.3361 |
|
| 112 |
+
| 0.0542 | 7.3985 | 43000 | 0.3787 | 0.3369 |
|
| 113 |
+
| 0.0542 | 7.5705 | 44000 | 0.3920 | 0.3310 |
|
| 114 |
+
| 0.0487 | 7.7426 | 45000 | 0.3906 | 0.3321 |
|
| 115 |
+
| 0.0487 | 7.9147 | 46000 | 0.3934 | 0.3323 |
|
| 116 |
+
| 0.0487 | 8.0867 | 47000 | 0.4060 | 0.3305 |
|
| 117 |
+
| 0.0412 | 8.2588 | 48000 | 0.4145 | 0.3301 |
|
| 118 |
+
| 0.0412 | 8.4308 | 49000 | 0.4125 | 0.3282 |
|
| 119 |
+
| 0.0412 | 8.6029 | 50000 | 0.4111 | 0.3286 |
|
| 120 |
+
| 0.0381 | 8.7749 | 51000 | 0.4113 | 0.3265 |
|
| 121 |
+
| 0.0381 | 8.9470 | 52000 | 0.4147 | 0.3268 |
|
| 122 |
+
| 0.0381 | 9.1191 | 53000 | 0.4221 | 0.3271 |
|
| 123 |
+
| 0.0338 | 9.2911 | 54000 | 0.4299 | 0.3268 |
|
| 124 |
+
| 0.0338 | 9.4632 | 55000 | 0.4221 | 0.3250 |
|
| 125 |
+
| 0.0338 | 9.6352 | 56000 | 0.4314 | 0.3245 |
|
| 126 |
+
| 0.0318 | 9.8073 | 57000 | 0.4307 | 0.3243 |
|
| 127 |
+
| 0.0318 | 9.9794 | 58000 | 0.4306 | 0.3240 |
|
| 128 |
|
| 129 |
|
| 130 |
### Framework versions
|
| 131 |
|
| 132 |
+
- Transformers 4.55.4
|
| 133 |
+
- Pytorch 2.8.0+cu126
|
| 134 |
- Datasets 3.6.0
|
| 135 |
+
- Tokenizers 0.21.4
|