Upload 7 files
Browse files- training/train_1.py +192 -0
- training/train_2.py +232 -0
- training/train_3.py +232 -0
- training/train_4.py +232 -0
- training/train_5.py +232 -0
- training/train_6.py +232 -0
- training/train_7.py +232 -0
training/train_1.py
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import torch
|
| 3 |
+
from torch.utils.data import Dataset, DataLoader
|
| 4 |
+
from transformers import AlbertTokenizer, AlbertForSequenceClassification, AdamW, get_linear_schedule_with_warmup
|
| 5 |
+
from sklearn.model_selection import train_test_split
|
| 6 |
+
import numpy as np
|
| 7 |
+
import os
|
| 8 |
+
from tqdm.auto import tqdm
|
| 9 |
+
import streamlit as st
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
|
| 12 |
+
# Constants
|
| 13 |
+
EPOCHS = 10
|
| 14 |
+
VAL_SPLIT = 0.1
|
| 15 |
+
VAL_EVERY_STEPS = 1000
|
| 16 |
+
BATCH_SIZE = 38
|
| 17 |
+
LEARNING_RATE = 5e-5
|
| 18 |
+
LOG_EVERY_STEP = True
|
| 19 |
+
SAVE_CHECKPOINTS = True
|
| 20 |
+
MAX_SEQ_LENGTH = 512
|
| 21 |
+
EARLY_STOPPING_PATIENCE = 3
|
| 22 |
+
MODEL_NAME = 'albert/albert-base-v2'
|
| 23 |
+
LEVEL = 1
|
| 24 |
+
OUTPUT_DIR = f'level{LEVEL}'
|
| 25 |
+
|
| 26 |
+
# Ensure output directory exists
|
| 27 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 28 |
+
|
| 29 |
+
# Load data
|
| 30 |
+
df = pd.read_csv(f'level_{LEVEL}.csv')
|
| 31 |
+
df.rename(columns={'response': 'text'}, inplace=True)
|
| 32 |
+
|
| 33 |
+
# Get unique labels and create mapping
|
| 34 |
+
labels = sorted(df[str(LEVEL)].unique())
|
| 35 |
+
label_to_index = {label: i for i, label in enumerate(labels)}
|
| 36 |
+
index_to_label = {i: label for label, i in label_to_index.items()}
|
| 37 |
+
num_labels = len(labels)
|
| 38 |
+
|
| 39 |
+
# Save label mapping
|
| 40 |
+
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)
|
| 41 |
+
|
| 42 |
+
# Prepare data for training
|
| 43 |
+
df['label'] = df[str(LEVEL)].map(label_to_index)
|
| 44 |
+
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)
|
| 45 |
+
|
| 46 |
+
# Tokenizer
|
| 47 |
+
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)
|
| 48 |
+
|
| 49 |
+
class TaxonomyDataset(Dataset):
|
| 50 |
+
def __init__(self, dataframe, tokenizer, max_len):
|
| 51 |
+
self.data = dataframe
|
| 52 |
+
self.tokenizer = tokenizer
|
| 53 |
+
self.max_len = max_len
|
| 54 |
+
|
| 55 |
+
def __len__(self):
|
| 56 |
+
return len(self.data)
|
| 57 |
+
|
| 58 |
+
def __getitem__(self, index):
|
| 59 |
+
text = str(self.data.iloc[index].text)
|
| 60 |
+
label = int(self.data.iloc[index].label)
|
| 61 |
+
encoding = self.tokenizer.encode_plus(
|
| 62 |
+
text,
|
| 63 |
+
add_special_tokens=True,
|
| 64 |
+
max_length=self.max_len,
|
| 65 |
+
padding='max_length',
|
| 66 |
+
truncation=True,
|
| 67 |
+
return_attention_mask=True,
|
| 68 |
+
return_tensors='pt'
|
| 69 |
+
)
|
| 70 |
+
return {
|
| 71 |
+
'input_ids': encoding['input_ids'].flatten(),
|
| 72 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
| 73 |
+
'labels': torch.tensor(label, dtype=torch.long)
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
# Create datasets and dataloaders
|
| 77 |
+
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH)
|
| 78 |
+
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH)
|
| 79 |
+
|
| 80 |
+
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
| 81 |
+
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
|
| 82 |
+
|
| 83 |
+
# Model
|
| 84 |
+
model = AlbertForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=num_labels)
|
| 85 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 86 |
+
model.to(device)
|
| 87 |
+
|
| 88 |
+
# Optimizer and scheduler
|
| 89 |
+
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
|
| 90 |
+
total_steps = len(train_dataloader) * EPOCHS
|
| 91 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
|
| 92 |
+
|
| 93 |
+
# Loss tracking
|
| 94 |
+
train_losses = []
|
| 95 |
+
val_losses = []
|
| 96 |
+
val_steps = []
|
| 97 |
+
best_val_loss = float('inf')
|
| 98 |
+
early_stopping_counter = 0
|
| 99 |
+
global_step = 0
|
| 100 |
+
|
| 101 |
+
# Streamlit setup
|
| 102 |
+
st.title(f'Level {LEVEL} Model Training')
|
| 103 |
+
progress_bar = st.progress(0)
|
| 104 |
+
status_text = st.empty()
|
| 105 |
+
train_loss_fig, train_loss_ax = plt.subplots()
|
| 106 |
+
val_loss_fig, val_loss_ax = plt.subplots()
|
| 107 |
+
train_loss_chart = st.pyplot(train_loss_fig)
|
| 108 |
+
val_loss_chart = st.pyplot(val_loss_fig)
|
| 109 |
+
|
| 110 |
+
def update_loss_charts():
|
| 111 |
+
train_loss_ax.clear()
|
| 112 |
+
train_loss_ax.plot(range(len(train_losses)), train_losses)
|
| 113 |
+
train_loss_ax.set_xlabel("Steps")
|
| 114 |
+
train_loss_ax.set_ylabel("Loss")
|
| 115 |
+
train_loss_ax.set_title("Training Loss")
|
| 116 |
+
train_loss_chart.pyplot(train_loss_fig)
|
| 117 |
+
|
| 118 |
+
val_loss_ax.clear()
|
| 119 |
+
val_loss_ax.plot(val_steps, val_losses)
|
| 120 |
+
val_loss_ax.set_xlabel("Steps")
|
| 121 |
+
val_loss_ax.set_ylabel("Loss")
|
| 122 |
+
val_loss_ax.set_title("Validation Loss")
|
| 123 |
+
val_loss_chart.pyplot(val_loss_fig)
|
| 124 |
+
|
| 125 |
+
# Training loop
|
| 126 |
+
for epoch in range(EPOCHS):
|
| 127 |
+
model.train()
|
| 128 |
+
total_train_loss = 0
|
| 129 |
+
for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
|
| 130 |
+
optimizer.zero_grad()
|
| 131 |
+
input_ids = batch['input_ids'].to(device)
|
| 132 |
+
attention_mask = batch['attention_mask'].to(device)
|
| 133 |
+
labels = batch['labels'].to(device)
|
| 134 |
+
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
|
| 135 |
+
loss = outputs.loss
|
| 136 |
+
total_train_loss += loss.item()
|
| 137 |
+
loss.backward()
|
| 138 |
+
optimizer.step()
|
| 139 |
+
scheduler.step()
|
| 140 |
+
global_step += 1
|
| 141 |
+
|
| 142 |
+
train_losses.append(loss.item())
|
| 143 |
+
|
| 144 |
+
if LOG_EVERY_STEP:
|
| 145 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
|
| 146 |
+
update_loss_charts()
|
| 147 |
+
|
| 148 |
+
if global_step % VAL_EVERY_STEPS == 0:
|
| 149 |
+
model.eval()
|
| 150 |
+
total_val_loss = 0
|
| 151 |
+
with torch.no_grad():
|
| 152 |
+
for val_batch in val_dataloader:
|
| 153 |
+
input_ids = val_batch['input_ids'].to(device)
|
| 154 |
+
attention_mask = val_batch['attention_mask'].to(device)
|
| 155 |
+
labels = val_batch['labels'].to(device)
|
| 156 |
+
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
|
| 157 |
+
total_val_loss += outputs.loss.item()
|
| 158 |
+
|
| 159 |
+
avg_val_loss = total_val_loss / len(val_dataloader)
|
| 160 |
+
val_losses.append(avg_val_loss)
|
| 161 |
+
val_steps.append(global_step)
|
| 162 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
|
| 163 |
+
update_loss_charts()
|
| 164 |
+
|
| 165 |
+
if SAVE_CHECKPOINTS:
|
| 166 |
+
checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
|
| 167 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
| 168 |
+
model.save_pretrained(checkpoint_dir)
|
| 169 |
+
tokenizer.save_pretrained(checkpoint_dir)
|
| 170 |
+
status_text.text(f"Checkpoint saved at step {global_step}")
|
| 171 |
+
|
| 172 |
+
if avg_val_loss < best_val_loss:
|
| 173 |
+
best_val_loss = avg_val_loss
|
| 174 |
+
early_stopping_counter = 0
|
| 175 |
+
else:
|
| 176 |
+
early_stopping_counter += 1
|
| 177 |
+
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
|
| 178 |
+
status_text.text(f"Early stopping triggered at step {global_step}")
|
| 179 |
+
progress_bar.progress(100)
|
| 180 |
+
# Save final model before stopping
|
| 181 |
+
model.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
| 182 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
| 183 |
+
exit() # Stop training
|
| 184 |
+
progress_bar.progress(int((global_step / total_steps) * 100))
|
| 185 |
+
|
| 186 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
| 187 |
+
print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')
|
| 188 |
+
|
| 189 |
+
# Save final model
|
| 190 |
+
model.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
| 191 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
| 192 |
+
status_text.success("Training complete!")
|
training/train_2.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import torch
|
| 3 |
+
from torch.utils.data import Dataset, DataLoader
|
| 4 |
+
from transformers import AlbertTokenizer, AlbertModel, AdamW, get_linear_schedule_with_warmup
|
| 5 |
+
from sklearn.model_selection import train_test_split
|
| 6 |
+
import numpy as np
|
| 7 |
+
import os
|
| 8 |
+
from tqdm.auto import tqdm
|
| 9 |
+
import streamlit as st
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
|
| 13 |
+
# Constants
|
| 14 |
+
EPOCHS = 10
|
| 15 |
+
VAL_SPLIT = 0.1
|
| 16 |
+
VAL_EVERY_STEPS = 1000
|
| 17 |
+
BATCH_SIZE = 38
|
| 18 |
+
LEARNING_RATE = 1e-5
|
| 19 |
+
LOG_EVERY_STEP = True
|
| 20 |
+
SAVE_CHECKPOINTS = True
|
| 21 |
+
MAX_SEQ_LENGTH = 512
|
| 22 |
+
EARLY_STOPPING_PATIENCE = 3
|
| 23 |
+
MODEL_NAME = 'albert/albert-base-v2'
|
| 24 |
+
LEVEL = 2
|
| 25 |
+
OUTPUT_DIR = f'level{LEVEL}'
|
| 26 |
+
|
| 27 |
+
# Ensure output directory exists
|
| 28 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 29 |
+
|
| 30 |
+
# Load data
|
| 31 |
+
df = pd.read_csv(f'level_{LEVEL}.csv')
|
| 32 |
+
df.rename(columns={'response': 'text'}, inplace=True)
|
| 33 |
+
|
| 34 |
+
# Get unique labels for current level and create mapping
|
| 35 |
+
labels = sorted(df[str(LEVEL)].unique())
|
| 36 |
+
label_to_index = {label: i for i, label in enumerate(labels)}
|
| 37 |
+
index_to_label = {i: label for label, i in label_to_index.items()}
|
| 38 |
+
num_labels = len(labels)
|
| 39 |
+
|
| 40 |
+
# Save label mapping for current level
|
| 41 |
+
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)
|
| 42 |
+
|
| 43 |
+
# Load parent level ID mapping
|
| 44 |
+
parent_level = LEVEL - 1
|
| 45 |
+
parent_label_to_index = np.load(f'level{parent_level}/label_map.npy', allow_pickle=True).item()
|
| 46 |
+
num_parent_labels = len(parent_label_to_index)
|
| 47 |
+
|
| 48 |
+
# Prepare data for training
|
| 49 |
+
df['label'] = df[str(LEVEL)].map(label_to_index)
|
| 50 |
+
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)
|
| 51 |
+
|
| 52 |
+
# Tokenizer
|
| 53 |
+
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)
|
| 54 |
+
|
| 55 |
+
class TaxonomyDataset(Dataset):
|
| 56 |
+
def __init__(self, dataframe, tokenizer, max_len, parent_label_to_index):
|
| 57 |
+
self.data = dataframe
|
| 58 |
+
self.tokenizer = tokenizer
|
| 59 |
+
self.max_len = max_len
|
| 60 |
+
self.parent_label_to_index = parent_label_to_index
|
| 61 |
+
|
| 62 |
+
def __len__(self):
|
| 63 |
+
return len(self.data)
|
| 64 |
+
|
| 65 |
+
def __getitem__(self, index):
|
| 66 |
+
text = str(self.data.iloc[index].text)
|
| 67 |
+
label = int(self.data.iloc[index].label)
|
| 68 |
+
parent_id = int(self.data.iloc[index][str(LEVEL - 1)])
|
| 69 |
+
|
| 70 |
+
encoding = self.tokenizer.encode_plus(
|
| 71 |
+
text,
|
| 72 |
+
add_special_tokens=True,
|
| 73 |
+
max_length=self.max_len,
|
| 74 |
+
padding='max_length',
|
| 75 |
+
truncation=True,
|
| 76 |
+
return_attention_mask=True,
|
| 77 |
+
return_tensors='pt'
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# One-hot encode parent ID
|
| 81 |
+
parent_one_hot = torch.zeros(len(self.parent_label_to_index))
|
| 82 |
+
if parent_id != 0:
|
| 83 |
+
parent_index = self.parent_label_to_index.get(parent_id)
|
| 84 |
+
if parent_index is not None:
|
| 85 |
+
parent_one_hot[parent_index] = 1
|
| 86 |
+
|
| 87 |
+
return {
|
| 88 |
+
'input_ids': encoding['input_ids'].flatten(),
|
| 89 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
| 90 |
+
'parent_ids': parent_one_hot,
|
| 91 |
+
'labels': torch.tensor(label, dtype=torch.long)
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
# Create datasets and dataloaders
|
| 95 |
+
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
| 96 |
+
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
| 97 |
+
|
| 98 |
+
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
| 99 |
+
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
|
| 100 |
+
|
| 101 |
+
# Model Definition
|
| 102 |
+
class TaxonomyClassifier(nn.Module):
|
| 103 |
+
def __init__(self, base_model_name, num_parent_labels, num_labels):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.albert = AlbertModel.from_pretrained(base_model_name)
|
| 106 |
+
self.dropout = nn.Dropout(0.1)
|
| 107 |
+
self.classifier = nn.Linear(self.albert.config.hidden_size + num_parent_labels, num_labels)
|
| 108 |
+
|
| 109 |
+
def forward(self, input_ids, attention_mask, parent_ids):
|
| 110 |
+
outputs = self.albert(input_ids, attention_mask=attention_mask)
|
| 111 |
+
pooled_output = outputs.pooler_output
|
| 112 |
+
pooled_output = self.dropout(pooled_output)
|
| 113 |
+
combined_features = torch.cat((pooled_output, parent_ids), dim=1)
|
| 114 |
+
logits = self.classifier(combined_features)
|
| 115 |
+
return logits
|
| 116 |
+
|
| 117 |
+
# Model Initialization
|
| 118 |
+
model = TaxonomyClassifier(MODEL_NAME, num_parent_labels, num_labels)
|
| 119 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 120 |
+
model.to(device)
|
| 121 |
+
|
| 122 |
+
# Optimizer and scheduler
|
| 123 |
+
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
|
| 124 |
+
total_steps = len(train_dataloader) * EPOCHS
|
| 125 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
|
| 126 |
+
|
| 127 |
+
# Loss Function
|
| 128 |
+
loss_fn = nn.CrossEntropyLoss()
|
| 129 |
+
|
| 130 |
+
# Loss tracking
|
| 131 |
+
train_losses = []
|
| 132 |
+
val_losses = []
|
| 133 |
+
val_steps = []
|
| 134 |
+
best_val_loss = float('inf')
|
| 135 |
+
early_stopping_counter = 0
|
| 136 |
+
global_step = 0
|
| 137 |
+
|
| 138 |
+
# Streamlit setup
|
| 139 |
+
st.title(f'Level {LEVEL} Model Training')
|
| 140 |
+
progress_bar = st.progress(0)
|
| 141 |
+
status_text = st.empty()
|
| 142 |
+
train_loss_fig, train_loss_ax = plt.subplots()
|
| 143 |
+
val_loss_fig, val_loss_ax = plt.subplots()
|
| 144 |
+
train_loss_chart = st.pyplot(train_loss_fig)
|
| 145 |
+
val_loss_chart = st.pyplot(val_loss_fig)
|
| 146 |
+
|
| 147 |
+
def update_loss_charts():
|
| 148 |
+
train_loss_ax.clear()
|
| 149 |
+
train_loss_ax.plot(range(len(train_losses)), train_losses)
|
| 150 |
+
train_loss_ax.set_xlabel("Steps")
|
| 151 |
+
train_loss_ax.set_ylabel("Loss")
|
| 152 |
+
train_loss_ax.set_title("Training Loss")
|
| 153 |
+
train_loss_chart.pyplot(train_loss_fig)
|
| 154 |
+
|
| 155 |
+
val_loss_ax.clear()
|
| 156 |
+
val_loss_ax.plot(val_steps, val_losses)
|
| 157 |
+
val_loss_ax.set_xlabel("Steps")
|
| 158 |
+
val_loss_ax.set_ylabel("Loss")
|
| 159 |
+
val_loss_ax.set_title("Validation Loss")
|
| 160 |
+
val_loss_chart.pyplot(val_loss_fig)
|
| 161 |
+
|
| 162 |
+
# Training loop
|
| 163 |
+
for epoch in range(EPOCHS):
|
| 164 |
+
model.train()
|
| 165 |
+
total_train_loss = 0
|
| 166 |
+
for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
|
| 167 |
+
optimizer.zero_grad()
|
| 168 |
+
input_ids = batch['input_ids'].to(device)
|
| 169 |
+
attention_mask = batch['attention_mask'].to(device)
|
| 170 |
+
parent_ids = batch['parent_ids'].to(device)
|
| 171 |
+
labels = batch['labels'].to(device)
|
| 172 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
| 173 |
+
loss = loss_fn(outputs, labels)
|
| 174 |
+
total_train_loss += loss.item()
|
| 175 |
+
loss.backward()
|
| 176 |
+
optimizer.step()
|
| 177 |
+
scheduler.step()
|
| 178 |
+
global_step += 1
|
| 179 |
+
|
| 180 |
+
train_losses.append(loss.item())
|
| 181 |
+
|
| 182 |
+
if LOG_EVERY_STEP:
|
| 183 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
|
| 184 |
+
update_loss_charts()
|
| 185 |
+
|
| 186 |
+
if global_step % VAL_EVERY_STEPS == 0:
|
| 187 |
+
model.eval()
|
| 188 |
+
total_val_loss = 0
|
| 189 |
+
with torch.no_grad():
|
| 190 |
+
for val_batch in val_dataloader:
|
| 191 |
+
input_ids = val_batch['input_ids'].to(device)
|
| 192 |
+
attention_mask = val_batch['attention_mask'].to(device)
|
| 193 |
+
parent_ids = val_batch['parent_ids'].to(device)
|
| 194 |
+
labels = val_batch['labels'].to(device)
|
| 195 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
| 196 |
+
loss = loss_fn(outputs, labels)
|
| 197 |
+
total_val_loss += loss.item()
|
| 198 |
+
|
| 199 |
+
avg_val_loss = total_val_loss / len(val_dataloader)
|
| 200 |
+
val_losses.append(avg_val_loss)
|
| 201 |
+
val_steps.append(global_step)
|
| 202 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
|
| 203 |
+
update_loss_charts()
|
| 204 |
+
|
| 205 |
+
if SAVE_CHECKPOINTS:
|
| 206 |
+
checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
|
| 207 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
| 208 |
+
torch.save(model.state_dict(), os.path.join(checkpoint_dir, 'model.safetensors'))
|
| 209 |
+
tokenizer.save_pretrained(checkpoint_dir)
|
| 210 |
+
status_text.text(f"Checkpoint saved at step {global_step}")
|
| 211 |
+
|
| 212 |
+
if avg_val_loss < best_val_loss:
|
| 213 |
+
best_val_loss = avg_val_loss
|
| 214 |
+
early_stopping_counter = 0
|
| 215 |
+
else:
|
| 216 |
+
early_stopping_counter += 1
|
| 217 |
+
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
|
| 218 |
+
status_text.text(f"Early stopping triggered at step {global_step}")
|
| 219 |
+
progress_bar.progress(100)
|
| 220 |
+
# Save final model before stopping
|
| 221 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
| 222 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
| 223 |
+
exit() # Stop training
|
| 224 |
+
progress_bar.progress(int((global_step / total_steps) * 100))
|
| 225 |
+
|
| 226 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
| 227 |
+
print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')
|
| 228 |
+
|
| 229 |
+
# Save final model
|
| 230 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
| 231 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
| 232 |
+
status_text.success("Training complete!")
|
training/train_3.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import torch
|
| 3 |
+
from torch.utils.data import Dataset, DataLoader
|
| 4 |
+
from transformers import AlbertTokenizer, AlbertModel, AdamW, get_linear_schedule_with_warmup
|
| 5 |
+
from sklearn.model_selection import train_test_split
|
| 6 |
+
import numpy as np
|
| 7 |
+
import os
|
| 8 |
+
from tqdm.auto import tqdm
|
| 9 |
+
import streamlit as st
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
|
| 13 |
+
# Constants
|
| 14 |
+
EPOCHS = 10
|
| 15 |
+
VAL_SPLIT = 0.1
|
| 16 |
+
VAL_EVERY_STEPS = 1000
|
| 17 |
+
BATCH_SIZE = 38
|
| 18 |
+
LEARNING_RATE = 5e-5
|
| 19 |
+
LOG_EVERY_STEP = True
|
| 20 |
+
SAVE_CHECKPOINTS = True
|
| 21 |
+
MAX_SEQ_LENGTH = 512
|
| 22 |
+
EARLY_STOPPING_PATIENCE = 3
|
| 23 |
+
MODEL_NAME = 'albert/albert-base-v2'
|
| 24 |
+
LEVEL = 3
|
| 25 |
+
OUTPUT_DIR = f'level{LEVEL}'
|
| 26 |
+
|
| 27 |
+
# Ensure output directory exists
|
| 28 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 29 |
+
|
| 30 |
+
# Load data
|
| 31 |
+
df = pd.read_csv(f'level_{LEVEL}.csv')
|
| 32 |
+
df.rename(columns={'response': 'text'}, inplace=True)
|
| 33 |
+
|
| 34 |
+
# Get unique labels for current level and create mapping
|
| 35 |
+
labels = sorted(df[str(LEVEL)].unique())
|
| 36 |
+
label_to_index = {label: i for i, label in enumerate(labels)}
|
| 37 |
+
index_to_label = {i: label for label, i in label_to_index.items()}
|
| 38 |
+
num_labels = len(labels)
|
| 39 |
+
|
| 40 |
+
# Save label mapping for current level
|
| 41 |
+
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)
|
| 42 |
+
|
| 43 |
+
# Load parent level ID mapping
|
| 44 |
+
parent_level = LEVEL - 1
|
| 45 |
+
parent_label_to_index = np.load(f'level{parent_level}/label_map.npy', allow_pickle=True).item()
|
| 46 |
+
num_parent_labels = len(parent_label_to_index)
|
| 47 |
+
|
| 48 |
+
# Prepare data for training
|
| 49 |
+
df['label'] = df[str(LEVEL)].map(label_to_index)
|
| 50 |
+
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)
|
| 51 |
+
|
| 52 |
+
# Tokenizer
|
| 53 |
+
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)
|
| 54 |
+
|
| 55 |
+
class TaxonomyDataset(Dataset):
|
| 56 |
+
def __init__(self, dataframe, tokenizer, max_len, parent_label_to_index):
|
| 57 |
+
self.data = dataframe
|
| 58 |
+
self.tokenizer = tokenizer
|
| 59 |
+
self.max_len = max_len
|
| 60 |
+
self.parent_label_to_index = parent_label_to_index
|
| 61 |
+
|
| 62 |
+
def __len__(self):
|
| 63 |
+
return len(self.data)
|
| 64 |
+
|
| 65 |
+
def __getitem__(self, index):
|
| 66 |
+
text = str(self.data.iloc[index].text)
|
| 67 |
+
label = int(self.data.iloc[index].label)
|
| 68 |
+
parent_id = int(self.data.iloc[index][str(LEVEL - 1)])
|
| 69 |
+
|
| 70 |
+
encoding = self.tokenizer.encode_plus(
|
| 71 |
+
text,
|
| 72 |
+
add_special_tokens=True,
|
| 73 |
+
max_length=self.max_len,
|
| 74 |
+
padding='max_length',
|
| 75 |
+
truncation=True,
|
| 76 |
+
return_attention_mask=True,
|
| 77 |
+
return_tensors='pt'
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# One-hot encode parent ID
|
| 81 |
+
parent_one_hot = torch.zeros(len(self.parent_label_to_index))
|
| 82 |
+
if parent_id != 0:
|
| 83 |
+
parent_index = self.parent_label_to_index.get(parent_id)
|
| 84 |
+
if parent_index is not None:
|
| 85 |
+
parent_one_hot[parent_index] = 1
|
| 86 |
+
|
| 87 |
+
return {
|
| 88 |
+
'input_ids': encoding['input_ids'].flatten(),
|
| 89 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
| 90 |
+
'parent_ids': parent_one_hot,
|
| 91 |
+
'labels': torch.tensor(label, dtype=torch.long)
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
# Create datasets and dataloaders
|
| 95 |
+
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
| 96 |
+
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
| 97 |
+
|
| 98 |
+
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
| 99 |
+
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
|
| 100 |
+
|
| 101 |
+
# Model Definition
|
| 102 |
+
class TaxonomyClassifier(nn.Module):
|
| 103 |
+
def __init__(self, base_model_name, num_parent_labels, num_labels):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.albert = AlbertModel.from_pretrained(base_model_name)
|
| 106 |
+
self.dropout = nn.Dropout(0.1)
|
| 107 |
+
self.classifier = nn.Linear(self.albert.config.hidden_size + num_parent_labels, num_labels)
|
| 108 |
+
|
| 109 |
+
def forward(self, input_ids, attention_mask, parent_ids):
|
| 110 |
+
outputs = self.albert(input_ids, attention_mask=attention_mask)
|
| 111 |
+
pooled_output = outputs.pooler_output
|
| 112 |
+
pooled_output = self.dropout(pooled_output)
|
| 113 |
+
combined_features = torch.cat((pooled_output, parent_ids), dim=1)
|
| 114 |
+
logits = self.classifier(combined_features)
|
| 115 |
+
return logits
|
| 116 |
+
|
| 117 |
+
# Model Initialization
|
| 118 |
+
model = TaxonomyClassifier(MODEL_NAME, num_parent_labels, num_labels)
|
| 119 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 120 |
+
model.to(device)
|
| 121 |
+
|
| 122 |
+
# Optimizer and scheduler
|
| 123 |
+
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
|
| 124 |
+
total_steps = len(train_dataloader) * EPOCHS
|
| 125 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
|
| 126 |
+
|
| 127 |
+
# Loss Function
|
| 128 |
+
loss_fn = nn.CrossEntropyLoss()
|
| 129 |
+
|
| 130 |
+
# Loss tracking
|
| 131 |
+
train_losses = []
|
| 132 |
+
val_losses = []
|
| 133 |
+
val_steps = []
|
| 134 |
+
best_val_loss = float('inf')
|
| 135 |
+
early_stopping_counter = 0
|
| 136 |
+
global_step = 0
|
| 137 |
+
|
| 138 |
+
# Streamlit setup
|
| 139 |
+
st.title(f'Level {LEVEL} Model Training')
|
| 140 |
+
progress_bar = st.progress(0)
|
| 141 |
+
status_text = st.empty()
|
| 142 |
+
train_loss_fig, train_loss_ax = plt.subplots()
|
| 143 |
+
val_loss_fig, val_loss_ax = plt.subplots()
|
| 144 |
+
train_loss_chart = st.pyplot(train_loss_fig)
|
| 145 |
+
val_loss_chart = st.pyplot(val_loss_fig)
|
| 146 |
+
|
| 147 |
+
def update_loss_charts():
|
| 148 |
+
train_loss_ax.clear()
|
| 149 |
+
train_loss_ax.plot(range(len(train_losses)), train_losses)
|
| 150 |
+
train_loss_ax.set_xlabel("Steps")
|
| 151 |
+
train_loss_ax.set_ylabel("Loss")
|
| 152 |
+
train_loss_ax.set_title("Training Loss")
|
| 153 |
+
train_loss_chart.pyplot(train_loss_fig)
|
| 154 |
+
|
| 155 |
+
val_loss_ax.clear()
|
| 156 |
+
val_loss_ax.plot(val_steps, val_losses)
|
| 157 |
+
val_loss_ax.set_xlabel("Steps")
|
| 158 |
+
val_loss_ax.set_ylabel("Loss")
|
| 159 |
+
val_loss_ax.set_title("Validation Loss")
|
| 160 |
+
val_loss_chart.pyplot(val_loss_fig)
|
| 161 |
+
|
| 162 |
+
# Training loop
|
| 163 |
+
for epoch in range(EPOCHS):
|
| 164 |
+
model.train()
|
| 165 |
+
total_train_loss = 0
|
| 166 |
+
for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
|
| 167 |
+
optimizer.zero_grad()
|
| 168 |
+
input_ids = batch['input_ids'].to(device)
|
| 169 |
+
attention_mask = batch['attention_mask'].to(device)
|
| 170 |
+
parent_ids = batch['parent_ids'].to(device)
|
| 171 |
+
labels = batch['labels'].to(device)
|
| 172 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
| 173 |
+
loss = loss_fn(outputs, labels)
|
| 174 |
+
total_train_loss += loss.item()
|
| 175 |
+
loss.backward()
|
| 176 |
+
optimizer.step()
|
| 177 |
+
scheduler.step()
|
| 178 |
+
global_step += 1
|
| 179 |
+
|
| 180 |
+
train_losses.append(loss.item())
|
| 181 |
+
|
| 182 |
+
if LOG_EVERY_STEP:
|
| 183 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
|
| 184 |
+
update_loss_charts()
|
| 185 |
+
|
| 186 |
+
if global_step % VAL_EVERY_STEPS == 0:
|
| 187 |
+
model.eval()
|
| 188 |
+
total_val_loss = 0
|
| 189 |
+
with torch.no_grad():
|
| 190 |
+
for val_batch in val_dataloader:
|
| 191 |
+
input_ids = val_batch['input_ids'].to(device)
|
| 192 |
+
attention_mask = val_batch['attention_mask'].to(device)
|
| 193 |
+
parent_ids = val_batch['parent_ids'].to(device)
|
| 194 |
+
labels = val_batch['labels'].to(device)
|
| 195 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
| 196 |
+
loss = loss_fn(outputs, labels)
|
| 197 |
+
total_val_loss += loss.item()
|
| 198 |
+
|
| 199 |
+
avg_val_loss = total_val_loss / len(val_dataloader)
|
| 200 |
+
val_losses.append(avg_val_loss)
|
| 201 |
+
val_steps.append(global_step)
|
| 202 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
|
| 203 |
+
update_loss_charts()
|
| 204 |
+
|
| 205 |
+
if SAVE_CHECKPOINTS:
|
| 206 |
+
checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
|
| 207 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
| 208 |
+
torch.save(model.state_dict(), os.path.join(checkpoint_dir, 'model.safetensors'))
|
| 209 |
+
tokenizer.save_pretrained(checkpoint_dir)
|
| 210 |
+
status_text.text(f"Checkpoint saved at step {global_step}")
|
| 211 |
+
|
| 212 |
+
if avg_val_loss < best_val_loss:
|
| 213 |
+
best_val_loss = avg_val_loss
|
| 214 |
+
early_stopping_counter = 0
|
| 215 |
+
else:
|
| 216 |
+
early_stopping_counter += 1
|
| 217 |
+
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
|
| 218 |
+
status_text.text(f"Early stopping triggered at step {global_step}")
|
| 219 |
+
progress_bar.progress(100)
|
| 220 |
+
# Save final model before stopping
|
| 221 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
| 222 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
| 223 |
+
exit() # Stop training
|
| 224 |
+
progress_bar.progress(int((global_step / total_steps) * 100))
|
| 225 |
+
|
| 226 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
| 227 |
+
print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')
|
| 228 |
+
|
| 229 |
+
# Save final model
|
| 230 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
| 231 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
| 232 |
+
status_text.success("Training complete!")
|
training/train_4.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import torch
|
| 3 |
+
from torch.utils.data import Dataset, DataLoader
|
| 4 |
+
from transformers import AlbertTokenizer, AlbertModel, AdamW, get_linear_schedule_with_warmup
|
| 5 |
+
from sklearn.model_selection import train_test_split
|
| 6 |
+
import numpy as np
|
| 7 |
+
import os
|
| 8 |
+
from tqdm.auto import tqdm
|
| 9 |
+
import streamlit as st
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
|
| 13 |
+
# Constants
|
| 14 |
+
EPOCHS = 10
|
| 15 |
+
VAL_SPLIT = 0.1
|
| 16 |
+
VAL_EVERY_STEPS = 1000
|
| 17 |
+
BATCH_SIZE = 38
|
| 18 |
+
LEARNING_RATE = 5e-5
|
| 19 |
+
LOG_EVERY_STEP = True
|
| 20 |
+
SAVE_CHECKPOINTS = True
|
| 21 |
+
MAX_SEQ_LENGTH = 512
|
| 22 |
+
EARLY_STOPPING_PATIENCE = 3
|
| 23 |
+
MODEL_NAME = 'albert/albert-base-v2'
|
| 24 |
+
LEVEL = 4
|
| 25 |
+
OUTPUT_DIR = f'level{LEVEL}'
|
| 26 |
+
|
| 27 |
+
# Ensure output directory exists
|
| 28 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 29 |
+
|
| 30 |
+
# Load data
|
| 31 |
+
df = pd.read_csv(f'level_{LEVEL}.csv')
|
| 32 |
+
df.rename(columns={'response': 'text'}, inplace=True)
|
| 33 |
+
|
| 34 |
+
# Get unique labels for current level and create mapping
|
| 35 |
+
labels = sorted(df[str(LEVEL)].unique())
|
| 36 |
+
label_to_index = {label: i for i, label in enumerate(labels)}
|
| 37 |
+
index_to_label = {i: label for label, i in label_to_index.items()}
|
| 38 |
+
num_labels = len(labels)
|
| 39 |
+
|
| 40 |
+
# Save label mapping for current level
|
| 41 |
+
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)
|
| 42 |
+
|
| 43 |
+
# Load parent level ID mapping
|
| 44 |
+
parent_level = LEVEL - 1
|
| 45 |
+
parent_label_to_index = np.load(f'level{parent_level}/label_map.npy', allow_pickle=True).item()
|
| 46 |
+
num_parent_labels = len(parent_label_to_index)
|
| 47 |
+
|
| 48 |
+
# Prepare data for training
|
| 49 |
+
df['label'] = df[str(LEVEL)].map(label_to_index)
|
| 50 |
+
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)
|
| 51 |
+
|
| 52 |
+
# Tokenizer
|
| 53 |
+
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)
|
| 54 |
+
|
| 55 |
+
class TaxonomyDataset(Dataset):
|
| 56 |
+
def __init__(self, dataframe, tokenizer, max_len, parent_label_to_index):
|
| 57 |
+
self.data = dataframe
|
| 58 |
+
self.tokenizer = tokenizer
|
| 59 |
+
self.max_len = max_len
|
| 60 |
+
self.parent_label_to_index = parent_label_to_index
|
| 61 |
+
|
| 62 |
+
def __len__(self):
|
| 63 |
+
return len(self.data)
|
| 64 |
+
|
| 65 |
+
def __getitem__(self, index):
|
| 66 |
+
text = str(self.data.iloc[index].text)
|
| 67 |
+
label = int(self.data.iloc[index].label)
|
| 68 |
+
parent_id = int(self.data.iloc[index][str(LEVEL - 1)])
|
| 69 |
+
|
| 70 |
+
encoding = self.tokenizer.encode_plus(
|
| 71 |
+
text,
|
| 72 |
+
add_special_tokens=True,
|
| 73 |
+
max_length=self.max_len,
|
| 74 |
+
padding='max_length',
|
| 75 |
+
truncation=True,
|
| 76 |
+
return_attention_mask=True,
|
| 77 |
+
return_tensors='pt'
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# One-hot encode parent ID
|
| 81 |
+
parent_one_hot = torch.zeros(len(self.parent_label_to_index))
|
| 82 |
+
if parent_id != 0:
|
| 83 |
+
parent_index = self.parent_label_to_index.get(parent_id)
|
| 84 |
+
if parent_index is not None:
|
| 85 |
+
parent_one_hot[parent_index] = 1
|
| 86 |
+
|
| 87 |
+
return {
|
| 88 |
+
'input_ids': encoding['input_ids'].flatten(),
|
| 89 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
| 90 |
+
'parent_ids': parent_one_hot,
|
| 91 |
+
'labels': torch.tensor(label, dtype=torch.long)
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
# Create datasets and dataloaders
|
| 95 |
+
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
| 96 |
+
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
| 97 |
+
|
| 98 |
+
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
| 99 |
+
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
|
| 100 |
+
|
| 101 |
+
# Model Definition
|
| 102 |
+
class TaxonomyClassifier(nn.Module):
|
| 103 |
+
def __init__(self, base_model_name, num_parent_labels, num_labels):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.albert = AlbertModel.from_pretrained(base_model_name)
|
| 106 |
+
self.dropout = nn.Dropout(0.1)
|
| 107 |
+
self.classifier = nn.Linear(self.albert.config.hidden_size + num_parent_labels, num_labels)
|
| 108 |
+
|
| 109 |
+
def forward(self, input_ids, attention_mask, parent_ids):
|
| 110 |
+
outputs = self.albert(input_ids, attention_mask=attention_mask)
|
| 111 |
+
pooled_output = outputs.pooler_output
|
| 112 |
+
pooled_output = self.dropout(pooled_output)
|
| 113 |
+
combined_features = torch.cat((pooled_output, parent_ids), dim=1)
|
| 114 |
+
logits = self.classifier(combined_features)
|
| 115 |
+
return logits
|
| 116 |
+
|
| 117 |
+
# Model Initialization
|
| 118 |
+
model = TaxonomyClassifier(MODEL_NAME, num_parent_labels, num_labels)
|
| 119 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 120 |
+
model.to(device)
|
| 121 |
+
|
| 122 |
+
# Optimizer and scheduler
|
| 123 |
+
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
|
| 124 |
+
total_steps = len(train_dataloader) * EPOCHS
|
| 125 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
|
| 126 |
+
|
| 127 |
+
# Loss Function
|
| 128 |
+
loss_fn = nn.CrossEntropyLoss()
|
| 129 |
+
|
| 130 |
+
# Loss tracking
|
| 131 |
+
train_losses = []
|
| 132 |
+
val_losses = []
|
| 133 |
+
val_steps = []
|
| 134 |
+
best_val_loss = float('inf')
|
| 135 |
+
early_stopping_counter = 0
|
| 136 |
+
global_step = 0
|
| 137 |
+
|
| 138 |
+
# Streamlit setup
|
| 139 |
+
st.title(f'Level {LEVEL} Model Training')
|
| 140 |
+
progress_bar = st.progress(0)
|
| 141 |
+
status_text = st.empty()
|
| 142 |
+
train_loss_fig, train_loss_ax = plt.subplots()
|
| 143 |
+
val_loss_fig, val_loss_ax = plt.subplots()
|
| 144 |
+
train_loss_chart = st.pyplot(train_loss_fig)
|
| 145 |
+
val_loss_chart = st.pyplot(val_loss_fig)
|
| 146 |
+
|
| 147 |
+
def update_loss_charts():
|
| 148 |
+
train_loss_ax.clear()
|
| 149 |
+
train_loss_ax.plot(range(len(train_losses)), train_losses)
|
| 150 |
+
train_loss_ax.set_xlabel("Steps")
|
| 151 |
+
train_loss_ax.set_ylabel("Loss")
|
| 152 |
+
train_loss_ax.set_title("Training Loss")
|
| 153 |
+
train_loss_chart.pyplot(train_loss_fig)
|
| 154 |
+
|
| 155 |
+
val_loss_ax.clear()
|
| 156 |
+
val_loss_ax.plot(val_steps, val_losses)
|
| 157 |
+
val_loss_ax.set_xlabel("Steps")
|
| 158 |
+
val_loss_ax.set_ylabel("Loss")
|
| 159 |
+
val_loss_ax.set_title("Validation Loss")
|
| 160 |
+
val_loss_chart.pyplot(val_loss_fig)
|
| 161 |
+
|
| 162 |
+
# Training loop
|
| 163 |
+
for epoch in range(EPOCHS):
|
| 164 |
+
model.train()
|
| 165 |
+
total_train_loss = 0
|
| 166 |
+
for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
|
| 167 |
+
optimizer.zero_grad()
|
| 168 |
+
input_ids = batch['input_ids'].to(device)
|
| 169 |
+
attention_mask = batch['attention_mask'].to(device)
|
| 170 |
+
parent_ids = batch['parent_ids'].to(device)
|
| 171 |
+
labels = batch['labels'].to(device)
|
| 172 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
| 173 |
+
loss = loss_fn(outputs, labels)
|
| 174 |
+
total_train_loss += loss.item()
|
| 175 |
+
loss.backward()
|
| 176 |
+
optimizer.step()
|
| 177 |
+
scheduler.step()
|
| 178 |
+
global_step += 1
|
| 179 |
+
|
| 180 |
+
train_losses.append(loss.item())
|
| 181 |
+
|
| 182 |
+
if LOG_EVERY_STEP:
|
| 183 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
|
| 184 |
+
update_loss_charts()
|
| 185 |
+
|
| 186 |
+
if global_step % VAL_EVERY_STEPS == 0:
|
| 187 |
+
model.eval()
|
| 188 |
+
total_val_loss = 0
|
| 189 |
+
with torch.no_grad():
|
| 190 |
+
for val_batch in val_dataloader:
|
| 191 |
+
input_ids = val_batch['input_ids'].to(device)
|
| 192 |
+
attention_mask = val_batch['attention_mask'].to(device)
|
| 193 |
+
parent_ids = val_batch['parent_ids'].to(device)
|
| 194 |
+
labels = val_batch['labels'].to(device)
|
| 195 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
| 196 |
+
loss = loss_fn(outputs, labels)
|
| 197 |
+
total_val_loss += loss.item()
|
| 198 |
+
|
| 199 |
+
avg_val_loss = total_val_loss / len(val_dataloader)
|
| 200 |
+
val_losses.append(avg_val_loss)
|
| 201 |
+
val_steps.append(global_step)
|
| 202 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
|
| 203 |
+
update_loss_charts()
|
| 204 |
+
|
| 205 |
+
if SAVE_CHECKPOINTS:
|
| 206 |
+
checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
|
| 207 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
| 208 |
+
torch.save(model.state_dict(), os.path.join(checkpoint_dir, 'model.safetensors'))
|
| 209 |
+
tokenizer.save_pretrained(checkpoint_dir)
|
| 210 |
+
status_text.text(f"Checkpoint saved at step {global_step}")
|
| 211 |
+
|
| 212 |
+
if avg_val_loss < best_val_loss:
|
| 213 |
+
best_val_loss = avg_val_loss
|
| 214 |
+
early_stopping_counter = 0
|
| 215 |
+
else:
|
| 216 |
+
early_stopping_counter += 1
|
| 217 |
+
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
|
| 218 |
+
status_text.text(f"Early stopping triggered at step {global_step}")
|
| 219 |
+
progress_bar.progress(100)
|
| 220 |
+
# Save final model before stopping
|
| 221 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
| 222 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
| 223 |
+
exit() # Stop training
|
| 224 |
+
progress_bar.progress(int((global_step / total_steps) * 100))
|
| 225 |
+
|
| 226 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
| 227 |
+
print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')
|
| 228 |
+
|
| 229 |
+
# Save final model
|
| 230 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
| 231 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
| 232 |
+
status_text.success("Training complete!")
|
training/train_5.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import torch
|
| 3 |
+
from torch.utils.data import Dataset, DataLoader
|
| 4 |
+
from transformers import AlbertTokenizer, AlbertModel, AdamW, get_linear_schedule_with_warmup
|
| 5 |
+
from sklearn.model_selection import train_test_split
|
| 6 |
+
import numpy as np
|
| 7 |
+
import os
|
| 8 |
+
from tqdm.auto import tqdm
|
| 9 |
+
import streamlit as st
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
|
| 13 |
+
# Constants
|
| 14 |
+
EPOCHS = 10
|
| 15 |
+
VAL_SPLIT = 0.1
|
| 16 |
+
VAL_EVERY_STEPS = 1000
|
| 17 |
+
BATCH_SIZE = 38
|
| 18 |
+
LEARNING_RATE = 5e-5
|
| 19 |
+
LOG_EVERY_STEP = True
|
| 20 |
+
SAVE_CHECKPOINTS = True
|
| 21 |
+
MAX_SEQ_LENGTH = 512
|
| 22 |
+
EARLY_STOPPING_PATIENCE = 3
|
| 23 |
+
MODEL_NAME = 'albert/albert-base-v2'
|
| 24 |
+
LEVEL = 5
|
| 25 |
+
OUTPUT_DIR = f'level{LEVEL}'
|
| 26 |
+
|
| 27 |
+
# Ensure output directory exists
|
| 28 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 29 |
+
|
| 30 |
+
# Load data
|
| 31 |
+
df = pd.read_csv(f'level_{LEVEL}.csv')
|
| 32 |
+
df.rename(columns={'response': 'text'}, inplace=True)
|
| 33 |
+
|
| 34 |
+
# Get unique labels for current level and create mapping
|
| 35 |
+
labels = sorted(df[str(LEVEL)].unique())
|
| 36 |
+
label_to_index = {label: i for i, label in enumerate(labels)}
|
| 37 |
+
index_to_label = {i: label for label, i in label_to_index.items()}
|
| 38 |
+
num_labels = len(labels)
|
| 39 |
+
|
| 40 |
+
# Save label mapping for current level
|
| 41 |
+
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)
|
| 42 |
+
|
| 43 |
+
# Load parent level ID mapping
|
| 44 |
+
parent_level = LEVEL - 1
|
| 45 |
+
parent_label_to_index = np.load(f'level{parent_level}/label_map.npy', allow_pickle=True).item()
|
| 46 |
+
num_parent_labels = len(parent_label_to_index)
|
| 47 |
+
|
| 48 |
+
# Prepare data for training
|
| 49 |
+
df['label'] = df[str(LEVEL)].map(label_to_index)
|
| 50 |
+
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)
|
| 51 |
+
|
| 52 |
+
# Tokenizer
|
| 53 |
+
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)
|
| 54 |
+
|
| 55 |
+
class TaxonomyDataset(Dataset):
|
| 56 |
+
def __init__(self, dataframe, tokenizer, max_len, parent_label_to_index):
|
| 57 |
+
self.data = dataframe
|
| 58 |
+
self.tokenizer = tokenizer
|
| 59 |
+
self.max_len = max_len
|
| 60 |
+
self.parent_label_to_index = parent_label_to_index
|
| 61 |
+
|
| 62 |
+
def __len__(self):
|
| 63 |
+
return len(self.data)
|
| 64 |
+
|
| 65 |
+
def __getitem__(self, index):
|
| 66 |
+
text = str(self.data.iloc[index].text)
|
| 67 |
+
label = int(self.data.iloc[index].label)
|
| 68 |
+
parent_id = int(self.data.iloc[index][str(LEVEL - 1)])
|
| 69 |
+
|
| 70 |
+
encoding = self.tokenizer.encode_plus(
|
| 71 |
+
text,
|
| 72 |
+
add_special_tokens=True,
|
| 73 |
+
max_length=self.max_len,
|
| 74 |
+
padding='max_length',
|
| 75 |
+
truncation=True,
|
| 76 |
+
return_attention_mask=True,
|
| 77 |
+
return_tensors='pt'
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# One-hot encode parent ID
|
| 81 |
+
parent_one_hot = torch.zeros(len(self.parent_label_to_index))
|
| 82 |
+
if parent_id != 0:
|
| 83 |
+
parent_index = self.parent_label_to_index.get(parent_id)
|
| 84 |
+
if parent_index is not None:
|
| 85 |
+
parent_one_hot[parent_index] = 1
|
| 86 |
+
|
| 87 |
+
return {
|
| 88 |
+
'input_ids': encoding['input_ids'].flatten(),
|
| 89 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
| 90 |
+
'parent_ids': parent_one_hot,
|
| 91 |
+
'labels': torch.tensor(label, dtype=torch.long)
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
# Create datasets and dataloaders
|
| 95 |
+
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
| 96 |
+
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
| 97 |
+
|
| 98 |
+
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
| 99 |
+
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
|
| 100 |
+
|
| 101 |
+
# Model Definition
|
| 102 |
+
class TaxonomyClassifier(nn.Module):
|
| 103 |
+
def __init__(self, base_model_name, num_parent_labels, num_labels):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.albert = AlbertModel.from_pretrained(base_model_name)
|
| 106 |
+
self.dropout = nn.Dropout(0.1)
|
| 107 |
+
self.classifier = nn.Linear(self.albert.config.hidden_size + num_parent_labels, num_labels)
|
| 108 |
+
|
| 109 |
+
def forward(self, input_ids, attention_mask, parent_ids):
|
| 110 |
+
outputs = self.albert(input_ids, attention_mask=attention_mask)
|
| 111 |
+
pooled_output = outputs.pooler_output
|
| 112 |
+
pooled_output = self.dropout(pooled_output)
|
| 113 |
+
combined_features = torch.cat((pooled_output, parent_ids), dim=1)
|
| 114 |
+
logits = self.classifier(combined_features)
|
| 115 |
+
return logits
|
| 116 |
+
|
| 117 |
+
# Model Initialization
|
| 118 |
+
model = TaxonomyClassifier(MODEL_NAME, num_parent_labels, num_labels)
|
| 119 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 120 |
+
model.to(device)
|
| 121 |
+
|
| 122 |
+
# Optimizer and scheduler
|
| 123 |
+
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
|
| 124 |
+
total_steps = len(train_dataloader) * EPOCHS
|
| 125 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
|
| 126 |
+
|
| 127 |
+
# Loss Function
|
| 128 |
+
loss_fn = nn.CrossEntropyLoss()
|
| 129 |
+
|
| 130 |
+
# Loss tracking
|
| 131 |
+
train_losses = []
|
| 132 |
+
val_losses = []
|
| 133 |
+
val_steps = []
|
| 134 |
+
best_val_loss = float('inf')
|
| 135 |
+
early_stopping_counter = 0
|
| 136 |
+
global_step = 0
|
| 137 |
+
|
| 138 |
+
# Streamlit setup
|
| 139 |
+
st.title(f'Level {LEVEL} Model Training')
|
| 140 |
+
progress_bar = st.progress(0)
|
| 141 |
+
status_text = st.empty()
|
| 142 |
+
train_loss_fig, train_loss_ax = plt.subplots()
|
| 143 |
+
val_loss_fig, val_loss_ax = plt.subplots()
|
| 144 |
+
train_loss_chart = st.pyplot(train_loss_fig)
|
| 145 |
+
val_loss_chart = st.pyplot(val_loss_fig)
|
| 146 |
+
|
| 147 |
+
def update_loss_charts():
|
| 148 |
+
train_loss_ax.clear()
|
| 149 |
+
train_loss_ax.plot(range(len(train_losses)), train_losses)
|
| 150 |
+
train_loss_ax.set_xlabel("Steps")
|
| 151 |
+
train_loss_ax.set_ylabel("Loss")
|
| 152 |
+
train_loss_ax.set_title("Training Loss")
|
| 153 |
+
train_loss_chart.pyplot(train_loss_fig)
|
| 154 |
+
|
| 155 |
+
val_loss_ax.clear()
|
| 156 |
+
val_loss_ax.plot(val_steps, val_losses)
|
| 157 |
+
val_loss_ax.set_xlabel("Steps")
|
| 158 |
+
val_loss_ax.set_ylabel("Loss")
|
| 159 |
+
val_loss_ax.set_title("Validation Loss")
|
| 160 |
+
val_loss_chart.pyplot(val_loss_fig)
|
| 161 |
+
|
| 162 |
+
# Training loop
|
| 163 |
+
for epoch in range(EPOCHS):
|
| 164 |
+
model.train()
|
| 165 |
+
total_train_loss = 0
|
| 166 |
+
for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
|
| 167 |
+
optimizer.zero_grad()
|
| 168 |
+
input_ids = batch['input_ids'].to(device)
|
| 169 |
+
attention_mask = batch['attention_mask'].to(device)
|
| 170 |
+
parent_ids = batch['parent_ids'].to(device)
|
| 171 |
+
labels = batch['labels'].to(device)
|
| 172 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
| 173 |
+
loss = loss_fn(outputs, labels)
|
| 174 |
+
total_train_loss += loss.item()
|
| 175 |
+
loss.backward()
|
| 176 |
+
optimizer.step()
|
| 177 |
+
scheduler.step()
|
| 178 |
+
global_step += 1
|
| 179 |
+
|
| 180 |
+
train_losses.append(loss.item())
|
| 181 |
+
|
| 182 |
+
if LOG_EVERY_STEP:
|
| 183 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
|
| 184 |
+
update_loss_charts()
|
| 185 |
+
|
| 186 |
+
if global_step % VAL_EVERY_STEPS == 0:
|
| 187 |
+
model.eval()
|
| 188 |
+
total_val_loss = 0
|
| 189 |
+
with torch.no_grad():
|
| 190 |
+
for val_batch in val_dataloader:
|
| 191 |
+
input_ids = val_batch['input_ids'].to(device)
|
| 192 |
+
attention_mask = val_batch['attention_mask'].to(device)
|
| 193 |
+
parent_ids = val_batch['parent_ids'].to(device)
|
| 194 |
+
labels = val_batch['labels'].to(device)
|
| 195 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
| 196 |
+
loss = loss_fn(outputs, labels)
|
| 197 |
+
total_val_loss += loss.item()
|
| 198 |
+
|
| 199 |
+
avg_val_loss = total_val_loss / len(val_dataloader)
|
| 200 |
+
val_losses.append(avg_val_loss)
|
| 201 |
+
val_steps.append(global_step)
|
| 202 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
|
| 203 |
+
update_loss_charts()
|
| 204 |
+
|
| 205 |
+
if SAVE_CHECKPOINTS:
|
| 206 |
+
checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
|
| 207 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
| 208 |
+
torch.save(model.state_dict(), os.path.join(checkpoint_dir, 'model.safetensors'))
|
| 209 |
+
tokenizer.save_pretrained(checkpoint_dir)
|
| 210 |
+
status_text.text(f"Checkpoint saved at step {global_step}")
|
| 211 |
+
|
| 212 |
+
if avg_val_loss < best_val_loss:
|
| 213 |
+
best_val_loss = avg_val_loss
|
| 214 |
+
early_stopping_counter = 0
|
| 215 |
+
else:
|
| 216 |
+
early_stopping_counter += 1
|
| 217 |
+
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
|
| 218 |
+
status_text.text(f"Early stopping triggered at step {global_step}")
|
| 219 |
+
progress_bar.progress(100)
|
| 220 |
+
# Save final model before stopping
|
| 221 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
| 222 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
| 223 |
+
exit() # Stop training
|
| 224 |
+
progress_bar.progress(int((global_step / total_steps) * 100))
|
| 225 |
+
|
| 226 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
| 227 |
+
print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')
|
| 228 |
+
|
| 229 |
+
# Save final model
|
| 230 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
| 231 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
| 232 |
+
status_text.success("Training complete!")
|
training/train_6.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import torch
|
| 3 |
+
from torch.utils.data import Dataset, DataLoader
|
| 4 |
+
from transformers import AlbertTokenizer, AlbertModel, AdamW, get_linear_schedule_with_warmup
|
| 5 |
+
from sklearn.model_selection import train_test_split
|
| 6 |
+
import numpy as np
|
| 7 |
+
import os
|
| 8 |
+
from tqdm.auto import tqdm
|
| 9 |
+
import streamlit as st
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
|
| 13 |
+
# Constants
|
| 14 |
+
EPOCHS = 10
|
| 15 |
+
VAL_SPLIT = 0.1
|
| 16 |
+
VAL_EVERY_STEPS = 1000
|
| 17 |
+
BATCH_SIZE = 38
|
| 18 |
+
LEARNING_RATE = 5e-5
|
| 19 |
+
LOG_EVERY_STEP = True
|
| 20 |
+
SAVE_CHECKPOINTS = True
|
| 21 |
+
MAX_SEQ_LENGTH = 512
|
| 22 |
+
EARLY_STOPPING_PATIENCE = 3
|
| 23 |
+
MODEL_NAME = 'albert/albert-base-v2'
|
| 24 |
+
LEVEL = 6
|
| 25 |
+
OUTPUT_DIR = f'level{LEVEL}'
|
| 26 |
+
|
| 27 |
+
# Ensure output directory exists
|
| 28 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 29 |
+
|
| 30 |
+
# Load data
|
| 31 |
+
df = pd.read_csv(f'level_{LEVEL}.csv')
|
| 32 |
+
df.rename(columns={'response': 'text'}, inplace=True)
|
| 33 |
+
|
| 34 |
+
# Get unique labels for current level and create mapping
|
| 35 |
+
labels = sorted(df[str(LEVEL)].unique())
|
| 36 |
+
label_to_index = {label: i for i, label in enumerate(labels)}
|
| 37 |
+
index_to_label = {i: label for label, i in label_to_index.items()}
|
| 38 |
+
num_labels = len(labels)
|
| 39 |
+
|
| 40 |
+
# Save label mapping for current level
|
| 41 |
+
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)
|
| 42 |
+
|
| 43 |
+
# Load parent level ID mapping
|
| 44 |
+
parent_level = LEVEL - 1
|
| 45 |
+
parent_label_to_index = np.load(f'level{parent_level}/label_map.npy', allow_pickle=True).item()
|
| 46 |
+
num_parent_labels = len(parent_label_to_index)
|
| 47 |
+
|
| 48 |
+
# Prepare data for training
|
| 49 |
+
df['label'] = df[str(LEVEL)].map(label_to_index)
|
| 50 |
+
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)
|
| 51 |
+
|
| 52 |
+
# Tokenizer
|
| 53 |
+
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)
|
| 54 |
+
|
| 55 |
+
class TaxonomyDataset(Dataset):
|
| 56 |
+
def __init__(self, dataframe, tokenizer, max_len, parent_label_to_index):
|
| 57 |
+
self.data = dataframe
|
| 58 |
+
self.tokenizer = tokenizer
|
| 59 |
+
self.max_len = max_len
|
| 60 |
+
self.parent_label_to_index = parent_label_to_index
|
| 61 |
+
|
| 62 |
+
def __len__(self):
|
| 63 |
+
return len(self.data)
|
| 64 |
+
|
| 65 |
+
def __getitem__(self, index):
|
| 66 |
+
text = str(self.data.iloc[index].text)
|
| 67 |
+
label = int(self.data.iloc[index].label)
|
| 68 |
+
parent_id = int(self.data.iloc[index][str(LEVEL - 1)])
|
| 69 |
+
|
| 70 |
+
encoding = self.tokenizer.encode_plus(
|
| 71 |
+
text,
|
| 72 |
+
add_special_tokens=True,
|
| 73 |
+
max_length=self.max_len,
|
| 74 |
+
padding='max_length',
|
| 75 |
+
truncation=True,
|
| 76 |
+
return_attention_mask=True,
|
| 77 |
+
return_tensors='pt'
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# One-hot encode parent ID
|
| 81 |
+
parent_one_hot = torch.zeros(len(self.parent_label_to_index))
|
| 82 |
+
if parent_id != 0:
|
| 83 |
+
parent_index = self.parent_label_to_index.get(parent_id)
|
| 84 |
+
if parent_index is not None:
|
| 85 |
+
parent_one_hot[parent_index] = 1
|
| 86 |
+
|
| 87 |
+
return {
|
| 88 |
+
'input_ids': encoding['input_ids'].flatten(),
|
| 89 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
| 90 |
+
'parent_ids': parent_one_hot,
|
| 91 |
+
'labels': torch.tensor(label, dtype=torch.long)
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
# Create datasets and dataloaders
|
| 95 |
+
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
| 96 |
+
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
| 97 |
+
|
| 98 |
+
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
| 99 |
+
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
|
| 100 |
+
|
| 101 |
+
# Model Definition
|
| 102 |
+
class TaxonomyClassifier(nn.Module):
|
| 103 |
+
def __init__(self, base_model_name, num_parent_labels, num_labels):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.albert = AlbertModel.from_pretrained(base_model_name)
|
| 106 |
+
self.dropout = nn.Dropout(0.1)
|
| 107 |
+
self.classifier = nn.Linear(self.albert.config.hidden_size + num_parent_labels, num_labels)
|
| 108 |
+
|
| 109 |
+
def forward(self, input_ids, attention_mask, parent_ids):
|
| 110 |
+
outputs = self.albert(input_ids, attention_mask=attention_mask)
|
| 111 |
+
pooled_output = outputs.pooler_output
|
| 112 |
+
pooled_output = self.dropout(pooled_output)
|
| 113 |
+
combined_features = torch.cat((pooled_output, parent_ids), dim=1)
|
| 114 |
+
logits = self.classifier(combined_features)
|
| 115 |
+
return logits
|
| 116 |
+
|
| 117 |
+
# Model Initialization
|
| 118 |
+
model = TaxonomyClassifier(MODEL_NAME, num_parent_labels, num_labels)
|
| 119 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 120 |
+
model.to(device)
|
| 121 |
+
|
| 122 |
+
# Optimizer and scheduler
|
| 123 |
+
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
|
| 124 |
+
total_steps = len(train_dataloader) * EPOCHS
|
| 125 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
|
| 126 |
+
|
| 127 |
+
# Loss Function
|
| 128 |
+
loss_fn = nn.CrossEntropyLoss()
|
| 129 |
+
|
| 130 |
+
# Loss tracking
|
| 131 |
+
train_losses = []
|
| 132 |
+
val_losses = []
|
| 133 |
+
val_steps = []
|
| 134 |
+
best_val_loss = float('inf')
|
| 135 |
+
early_stopping_counter = 0
|
| 136 |
+
global_step = 0
|
| 137 |
+
|
| 138 |
+
# Streamlit setup
|
| 139 |
+
st.title(f'Level {LEVEL} Model Training')
|
| 140 |
+
progress_bar = st.progress(0)
|
| 141 |
+
status_text = st.empty()
|
| 142 |
+
train_loss_fig, train_loss_ax = plt.subplots()
|
| 143 |
+
val_loss_fig, val_loss_ax = plt.subplots()
|
| 144 |
+
train_loss_chart = st.pyplot(train_loss_fig)
|
| 145 |
+
val_loss_chart = st.pyplot(val_loss_fig)
|
| 146 |
+
|
| 147 |
+
def update_loss_charts():
|
| 148 |
+
train_loss_ax.clear()
|
| 149 |
+
train_loss_ax.plot(range(len(train_losses)), train_losses)
|
| 150 |
+
train_loss_ax.set_xlabel("Steps")
|
| 151 |
+
train_loss_ax.set_ylabel("Loss")
|
| 152 |
+
train_loss_ax.set_title("Training Loss")
|
| 153 |
+
train_loss_chart.pyplot(train_loss_fig)
|
| 154 |
+
|
| 155 |
+
val_loss_ax.clear()
|
| 156 |
+
val_loss_ax.plot(val_steps, val_losses)
|
| 157 |
+
val_loss_ax.set_xlabel("Steps")
|
| 158 |
+
val_loss_ax.set_ylabel("Loss")
|
| 159 |
+
val_loss_ax.set_title("Validation Loss")
|
| 160 |
+
val_loss_chart.pyplot(val_loss_fig)
|
| 161 |
+
|
| 162 |
+
# Training loop
|
| 163 |
+
for epoch in range(EPOCHS):
|
| 164 |
+
model.train()
|
| 165 |
+
total_train_loss = 0
|
| 166 |
+
for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
|
| 167 |
+
optimizer.zero_grad()
|
| 168 |
+
input_ids = batch['input_ids'].to(device)
|
| 169 |
+
attention_mask = batch['attention_mask'].to(device)
|
| 170 |
+
parent_ids = batch['parent_ids'].to(device)
|
| 171 |
+
labels = batch['labels'].to(device)
|
| 172 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
| 173 |
+
loss = loss_fn(outputs, labels)
|
| 174 |
+
total_train_loss += loss.item()
|
| 175 |
+
loss.backward()
|
| 176 |
+
optimizer.step()
|
| 177 |
+
scheduler.step()
|
| 178 |
+
global_step += 1
|
| 179 |
+
|
| 180 |
+
train_losses.append(loss.item())
|
| 181 |
+
|
| 182 |
+
if LOG_EVERY_STEP:
|
| 183 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
|
| 184 |
+
update_loss_charts()
|
| 185 |
+
|
| 186 |
+
if global_step % VAL_EVERY_STEPS == 0:
|
| 187 |
+
model.eval()
|
| 188 |
+
total_val_loss = 0
|
| 189 |
+
with torch.no_grad():
|
| 190 |
+
for val_batch in val_dataloader:
|
| 191 |
+
input_ids = val_batch['input_ids'].to(device)
|
| 192 |
+
attention_mask = val_batch['attention_mask'].to(device)
|
| 193 |
+
parent_ids = val_batch['parent_ids'].to(device)
|
| 194 |
+
labels = val_batch['labels'].to(device)
|
| 195 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
| 196 |
+
loss = loss_fn(outputs, labels)
|
| 197 |
+
total_val_loss += loss.item()
|
| 198 |
+
|
| 199 |
+
avg_val_loss = total_val_loss / len(val_dataloader)
|
| 200 |
+
val_losses.append(avg_val_loss)
|
| 201 |
+
val_steps.append(global_step)
|
| 202 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
|
| 203 |
+
update_loss_charts()
|
| 204 |
+
|
| 205 |
+
if SAVE_CHECKPOINTS:
|
| 206 |
+
checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
|
| 207 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
| 208 |
+
torch.save(model.state_dict(), os.path.join(checkpoint_dir, 'model.safetensors'))
|
| 209 |
+
tokenizer.save_pretrained(checkpoint_dir)
|
| 210 |
+
status_text.text(f"Checkpoint saved at step {global_step}")
|
| 211 |
+
|
| 212 |
+
if avg_val_loss < best_val_loss:
|
| 213 |
+
best_val_loss = avg_val_loss
|
| 214 |
+
early_stopping_counter = 0
|
| 215 |
+
else:
|
| 216 |
+
early_stopping_counter += 1
|
| 217 |
+
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
|
| 218 |
+
status_text.text(f"Early stopping triggered at step {global_step}")
|
| 219 |
+
progress_bar.progress(100)
|
| 220 |
+
# Save final model before stopping
|
| 221 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
| 222 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
| 223 |
+
exit() # Stop training
|
| 224 |
+
progress_bar.progress(int((global_step / total_steps) * 100))
|
| 225 |
+
|
| 226 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
| 227 |
+
print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')
|
| 228 |
+
|
| 229 |
+
# Save final model
|
| 230 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
| 231 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
| 232 |
+
status_text.success("Training complete!")
|
training/train_7.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import torch
|
| 3 |
+
from torch.utils.data import Dataset, DataLoader
|
| 4 |
+
from transformers import AlbertTokenizer, AlbertModel, AdamW, get_linear_schedule_with_warmup
|
| 5 |
+
from sklearn.model_selection import train_test_split
|
| 6 |
+
import numpy as np
|
| 7 |
+
import os
|
| 8 |
+
from tqdm.auto import tqdm
|
| 9 |
+
import streamlit as st
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
|
| 13 |
+
# Constants
|
| 14 |
+
EPOCHS = 10
|
| 15 |
+
VAL_SPLIT = 0.1
|
| 16 |
+
VAL_EVERY_STEPS = 1000
|
| 17 |
+
BATCH_SIZE = 38
|
| 18 |
+
LEARNING_RATE = 5e-5
|
| 19 |
+
LOG_EVERY_STEP = True
|
| 20 |
+
SAVE_CHECKPOINTS = True
|
| 21 |
+
MAX_SEQ_LENGTH = 512
|
| 22 |
+
EARLY_STOPPING_PATIENCE = 3
|
| 23 |
+
MODEL_NAME = 'albert/albert-base-v2'
|
| 24 |
+
LEVEL = 7
|
| 25 |
+
OUTPUT_DIR = f'level{LEVEL}'
|
| 26 |
+
|
| 27 |
+
# Ensure output directory exists
|
| 28 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 29 |
+
|
| 30 |
+
# Load data
|
| 31 |
+
df = pd.read_csv(f'level_{LEVEL}.csv')
|
| 32 |
+
df.rename(columns={'response': 'text'}, inplace=True)
|
| 33 |
+
|
| 34 |
+
# Get unique labels for current level and create mapping
|
| 35 |
+
labels = sorted(df[str(LEVEL)].unique())
|
| 36 |
+
label_to_index = {label: i for i, label in enumerate(labels)}
|
| 37 |
+
index_to_label = {i: label for label, i in label_to_index.items()}
|
| 38 |
+
num_labels = len(labels)
|
| 39 |
+
|
| 40 |
+
# Save label mapping for current level
|
| 41 |
+
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)
|
| 42 |
+
|
| 43 |
+
# Load parent level ID mapping
|
| 44 |
+
parent_level = LEVEL - 1
|
| 45 |
+
parent_label_to_index = np.load(f'level{parent_level}/label_map.npy', allow_pickle=True).item()
|
| 46 |
+
num_parent_labels = len(parent_label_to_index)
|
| 47 |
+
|
| 48 |
+
# Prepare data for training
|
| 49 |
+
df['label'] = df[str(LEVEL)].map(label_to_index)
|
| 50 |
+
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)
|
| 51 |
+
|
| 52 |
+
# Tokenizer
|
| 53 |
+
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)
|
| 54 |
+
|
| 55 |
+
class TaxonomyDataset(Dataset):
|
| 56 |
+
def __init__(self, dataframe, tokenizer, max_len, parent_label_to_index):
|
| 57 |
+
self.data = dataframe
|
| 58 |
+
self.tokenizer = tokenizer
|
| 59 |
+
self.max_len = max_len
|
| 60 |
+
self.parent_label_to_index = parent_label_to_index
|
| 61 |
+
|
| 62 |
+
def __len__(self):
|
| 63 |
+
return len(self.data)
|
| 64 |
+
|
| 65 |
+
def __getitem__(self, index):
|
| 66 |
+
text = str(self.data.iloc[index].text)
|
| 67 |
+
label = int(self.data.iloc[index].label)
|
| 68 |
+
parent_id = int(self.data.iloc[index][str(LEVEL - 1)])
|
| 69 |
+
|
| 70 |
+
encoding = self.tokenizer.encode_plus(
|
| 71 |
+
text,
|
| 72 |
+
add_special_tokens=True,
|
| 73 |
+
max_length=self.max_len,
|
| 74 |
+
padding='max_length',
|
| 75 |
+
truncation=True,
|
| 76 |
+
return_attention_mask=True,
|
| 77 |
+
return_tensors='pt'
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# One-hot encode parent ID
|
| 81 |
+
parent_one_hot = torch.zeros(len(self.parent_label_to_index))
|
| 82 |
+
if parent_id != 0:
|
| 83 |
+
parent_index = self.parent_label_to_index.get(parent_id)
|
| 84 |
+
if parent_index is not None:
|
| 85 |
+
parent_one_hot[parent_index] = 1
|
| 86 |
+
|
| 87 |
+
return {
|
| 88 |
+
'input_ids': encoding['input_ids'].flatten(),
|
| 89 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
| 90 |
+
'parent_ids': parent_one_hot,
|
| 91 |
+
'labels': torch.tensor(label, dtype=torch.long)
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
# Create datasets and dataloaders
|
| 95 |
+
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
| 96 |
+
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
| 97 |
+
|
| 98 |
+
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
| 99 |
+
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
|
| 100 |
+
|
| 101 |
+
# Model Definition
|
| 102 |
+
class TaxonomyClassifier(nn.Module):
|
| 103 |
+
def __init__(self, base_model_name, num_parent_labels, num_labels):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.albert = AlbertModel.from_pretrained(base_model_name)
|
| 106 |
+
self.dropout = nn.Dropout(0.1)
|
| 107 |
+
self.classifier = nn.Linear(self.albert.config.hidden_size + num_parent_labels, num_labels)
|
| 108 |
+
|
| 109 |
+
def forward(self, input_ids, attention_mask, parent_ids):
|
| 110 |
+
outputs = self.albert(input_ids, attention_mask=attention_mask)
|
| 111 |
+
pooled_output = outputs.pooler_output
|
| 112 |
+
pooled_output = self.dropout(pooled_output)
|
| 113 |
+
combined_features = torch.cat((pooled_output, parent_ids), dim=1)
|
| 114 |
+
logits = self.classifier(combined_features)
|
| 115 |
+
return logits
|
| 116 |
+
|
| 117 |
+
# Model Initialization
|
| 118 |
+
model = TaxonomyClassifier(MODEL_NAME, num_parent_labels, num_labels)
|
| 119 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 120 |
+
model.to(device)
|
| 121 |
+
|
| 122 |
+
# Optimizer and scheduler
|
| 123 |
+
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
|
| 124 |
+
total_steps = len(train_dataloader) * EPOCHS
|
| 125 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
|
| 126 |
+
|
| 127 |
+
# Loss Function
|
| 128 |
+
loss_fn = nn.CrossEntropyLoss()
|
| 129 |
+
|
| 130 |
+
# Loss tracking
|
| 131 |
+
train_losses = []
|
| 132 |
+
val_losses = []
|
| 133 |
+
val_steps = []
|
| 134 |
+
best_val_loss = float('inf')
|
| 135 |
+
early_stopping_counter = 0
|
| 136 |
+
global_step = 0
|
| 137 |
+
|
| 138 |
+
# Streamlit setup
|
| 139 |
+
st.title(f'Level {LEVEL} Model Training')
|
| 140 |
+
progress_bar = st.progress(0)
|
| 141 |
+
status_text = st.empty()
|
| 142 |
+
train_loss_fig, train_loss_ax = plt.subplots()
|
| 143 |
+
val_loss_fig, val_loss_ax = plt.subplots()
|
| 144 |
+
train_loss_chart = st.pyplot(train_loss_fig)
|
| 145 |
+
val_loss_chart = st.pyplot(val_loss_fig)
|
| 146 |
+
|
| 147 |
+
def update_loss_charts():
|
| 148 |
+
train_loss_ax.clear()
|
| 149 |
+
train_loss_ax.plot(range(len(train_losses)), train_losses)
|
| 150 |
+
train_loss_ax.set_xlabel("Steps")
|
| 151 |
+
train_loss_ax.set_ylabel("Loss")
|
| 152 |
+
train_loss_ax.set_title("Training Loss")
|
| 153 |
+
train_loss_chart.pyplot(train_loss_fig)
|
| 154 |
+
|
| 155 |
+
val_loss_ax.clear()
|
| 156 |
+
val_loss_ax.plot(val_steps, val_losses)
|
| 157 |
+
val_loss_ax.set_xlabel("Steps")
|
| 158 |
+
val_loss_ax.set_ylabel("Loss")
|
| 159 |
+
val_loss_ax.set_title("Validation Loss")
|
| 160 |
+
val_loss_chart.pyplot(val_loss_fig)
|
| 161 |
+
|
| 162 |
+
# Training loop
|
| 163 |
+
for epoch in range(EPOCHS):
|
| 164 |
+
model.train()
|
| 165 |
+
total_train_loss = 0
|
| 166 |
+
for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
|
| 167 |
+
optimizer.zero_grad()
|
| 168 |
+
input_ids = batch['input_ids'].to(device)
|
| 169 |
+
attention_mask = batch['attention_mask'].to(device)
|
| 170 |
+
parent_ids = batch['parent_ids'].to(device)
|
| 171 |
+
labels = batch['labels'].to(device)
|
| 172 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
| 173 |
+
loss = loss_fn(outputs, labels)
|
| 174 |
+
total_train_loss += loss.item()
|
| 175 |
+
loss.backward()
|
| 176 |
+
optimizer.step()
|
| 177 |
+
scheduler.step()
|
| 178 |
+
global_step += 1
|
| 179 |
+
|
| 180 |
+
train_losses.append(loss.item())
|
| 181 |
+
|
| 182 |
+
if LOG_EVERY_STEP:
|
| 183 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
|
| 184 |
+
update_loss_charts()
|
| 185 |
+
|
| 186 |
+
if global_step % VAL_EVERY_STEPS == 0:
|
| 187 |
+
model.eval()
|
| 188 |
+
total_val_loss = 0
|
| 189 |
+
with torch.no_grad():
|
| 190 |
+
for val_batch in val_dataloader:
|
| 191 |
+
input_ids = val_batch['input_ids'].to(device)
|
| 192 |
+
attention_mask = val_batch['attention_mask'].to(device)
|
| 193 |
+
parent_ids = val_batch['parent_ids'].to(device)
|
| 194 |
+
labels = val_batch['labels'].to(device)
|
| 195 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
| 196 |
+
loss = loss_fn(outputs, labels)
|
| 197 |
+
total_val_loss += loss.item()
|
| 198 |
+
|
| 199 |
+
avg_val_loss = total_val_loss / len(val_dataloader)
|
| 200 |
+
val_losses.append(avg_val_loss)
|
| 201 |
+
val_steps.append(global_step)
|
| 202 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
|
| 203 |
+
update_loss_charts()
|
| 204 |
+
|
| 205 |
+
if SAVE_CHECKPOINTS:
|
| 206 |
+
checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
|
| 207 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
| 208 |
+
torch.save(model.state_dict(), os.path.join(checkpoint_dir, 'model.safetensors'))
|
| 209 |
+
tokenizer.save_pretrained(checkpoint_dir)
|
| 210 |
+
status_text.text(f"Checkpoint saved at step {global_step}")
|
| 211 |
+
|
| 212 |
+
if avg_val_loss < best_val_loss:
|
| 213 |
+
best_val_loss = avg_val_loss
|
| 214 |
+
early_stopping_counter = 0
|
| 215 |
+
else:
|
| 216 |
+
early_stopping_counter += 1
|
| 217 |
+
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
|
| 218 |
+
status_text.text(f"Early stopping triggered at step {global_step}")
|
| 219 |
+
progress_bar.progress(100)
|
| 220 |
+
# Save final model before stopping
|
| 221 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
| 222 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
| 223 |
+
exit() # Stop training
|
| 224 |
+
progress_bar.progress(int((global_step / total_steps) * 100))
|
| 225 |
+
|
| 226 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
| 227 |
+
print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')
|
| 228 |
+
|
| 229 |
+
# Save final model
|
| 230 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
| 231 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
| 232 |
+
status_text.success("Training complete!")
|